Skip to main content

The Structure and Function of Salt Glands

  • Chapter
Plants in Saline Environments

Part of the book series: Ecological Studies ((ECOLSTUD,volume 15))

Abstract

Many halophytic plants have epidermal glands on their leaves and stems which secrete salt (Metcalfe and Chalk, 1950). These glands have been considered efficient devices for the secretion of excess salt which accumulates in the tissue (Haberlandt, 1914; Helder, 1956; Scholander, 1968; Scholander et al., 1962; 1965; 1966). Helder (1956) indicated that salt glands were common in the families Plumbaginaceae and Frankeniaceae but only occurred in a few scattered species outside these families. However, many other plants are known to have trichomes, glands, and glandular structures, but in many instances further investigations are needed to determine their secretion products. Many of these may possibly be salt glands (i.e. specialized structures which secrete minerals and ions) and an understanding of the general distribution and significance of salt glands must await further information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arisz, W.H.: Significance of the symplasm theory for transport across the root. Protoplasma 46, 5–62 (1956).

    Article  Google Scholar 

  • Arisz, W.H., Camphuis, I. J., Heikens, H., van Tooren, A. J.: The secretion of the salt glands of Limonium latifolium ktze. Acta Botan. Neerl. 4, 322–338 (1955).

    Google Scholar 

  • Atkinson, M.R., Findlay, C.P., Hope, A. B., Pitman, M.G., Saddler, H.D.W., West, K.R.: Salt regulation in the mangrovesRhizophora mucronata Lam. and Aegialitis annulata R. Br. Australian J. Biol. Sci. 20, 589–599 (1967).

    CAS  Google Scholar 

  • Berridge, M. J., Gupta, B.L.: Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly Calliphora. J. Cell Sci. 2, 89–112 (1967).

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Gupta, B.L.: Fine-structural localization of adenosine triphosphatase in the rectum of Calliphora. J. Cell Sci. 3, 17–32 (1968)

    PubMed  CAS  Google Scholar 

  • Berridge, MJ., Oschman, J. L.: A structural basis for fluid secretion by Malpighian tubules. Tissue and Cell. 1, 247–272 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Berry, W.L.: Characteristics of salts secreted by Tamarix aphylla, Am. J. Botany 57, 1226–1230 (1970).

    Article  CAS  Google Scholar 

  • Berry, W.L., Thomson, W.W.: Composition of salt secreted by salt glands of Tamarix aphylla. Can. J. Botany 45, 1774–1775 (1967).

    Article  CAS  Google Scholar 

  • Black, R.F.: Leaf anatomy of Australian members of the genus Atriplex. I. Atriplex vesicaria Heward and A.nummularia Lindl. Australian J. Botan. 2, 259–286 (1954).

    Google Scholar 

  • Bonnett, H.T., Jr.: The root endodermis: fine structure and function. J. Cell Biol. 37, 109–205 (1968).

    Article  Google Scholar 

  • Campbell, C. J., Strong, J. E.: Salt gland anatomy in Tamarix pentandra (Tamaricaceae). Southwest Nat. 9, 232–238 (1964).

    Article  Google Scholar 

  • Copeland, E.: Salt transport organelle in Anemia salenis. Science 151, 470–471 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M., Bossert, W.H.: Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50, 2061–2083 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M., Bossert, W.H.: Functional consequences of ultrastructural geometry in “backwards” fluid-transporting epithelia. J. Cell Biol. 37, 694–702 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M., Tormey, J. McD.: Role of long extracellular channels in fluid transport across epithelia. Nature 210, 817–820 (1966a).

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M., Tormey, J. McD.: Studies on the structural basis of water transport across epithelial membranes. Federation Proc. 25, 1458–1463 (1966b).

    CAS  Google Scholar 

  • Ernst, S. A., Philpott, C.W.: Preservation of Na-K activated and Mg-activated adenosine triphosphatase activity of avian salt gland and telost gill with formaldehyde as fixative. J. Histochem. Cytochem. 18, 251–263 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Esau, K.: Plant Anatomy, 2nd ed. pp.767. New York-London-Sidney: John Wiley and Sons 1965.

    Google Scholar 

  • Findlay, N., Mercer, F. V.: Nectar Production in Ahutilon. I. Movement of Nectar through the Cuticle. J. Biol. Sci. 24, 647–56 (1971a).

    Google Scholar 

  • Findlay, N., Mercer, F. V.: Nectar Production in Abut Hon. II. Submicroscopic Structure of the Nectary. J. Biol. Sci. 24, 657–64 (1971b).

    Google Scholar 

  • Fisher, J., Hodges, T.K.: Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 44, 385–395 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Gunning, B.E.S., Pate, J. S.: “Transfer cells”—Plant cells with wall ingrowths, specialized in relation to short transport of solutes—their occurrence, structure, and development. Protoplasma 68, 107–133 (1969a).

    Article  Google Scholar 

  • Gunning, B.E.S, Pate, J. S.: Vascular transfer cells in angiosperm leaves a taxonomic and morphological survey. Protoplasma 68, 135–156 (1969b).

    Article  Google Scholar 

  • Haberlandt, G.: Physiological plant anatomy, 777 pp. London: MacMillan and Co., Ltd. 1914.

    Google Scholar 

  • Helder, R. J.: The loss of substances by cells and tissues (salt glands). In: Ruhland, W. (Ed.): Handbuch der Pflanzenphysiologie, Vol.2, pp.468–88. Berlin-Gottingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Hill, A. E.: Ion and water transport in Limonium. I. Active transport by the leaf gland cells. Biochim. Biophys. Acta 135, 454–460 (1967a).

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. E.: Ion and water transport in Limonium. II. Short-circuit analysis. Biochim. Biophys. Acta 135, 461–465 (1967b).

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. E.: Ion and water transport in Limonium. III. Time constants of the transport system. Biochim. Biophys. Acta 196, 66–72 (1970a).

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. E.: Ion and water transport in Limonium. IV. Delay effects in the transport process. Biochim. Biophys. Acta 196, 73–79 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • Jennings, D.H.: Halophytes, succulence and sodium in plants—a unified theory. New Phytol. 67, 899–911 (1968).

    Article  CAS  Google Scholar 

  • Jensen, W.A.: Cell development during plant embryogenesis. Brookhaven Symp. Biol. 16, 179–202 (1963).

    Google Scholar 

  • Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N.: Fluid transport in the rabbit gallbladder. Jour. Cell. Biol. 30, 237–268 (1966).

    Article  CAS  Google Scholar 

  • Kelley, C.: Wall projections in the sporophyte and gametophyte of Sphaerocarpus. J. Cell Biol. 41, 910–914 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Komnick, H.: Electronenmikroskopische Lokalisation von Na+ und CI- in Zellen und Geweben. Protoplasma 55, 414–418 (1967).

    Article  Google Scholar 

  • Kylin, A., Gee, R.: Adenosine triphosphatase activities in leaves of the mangrove Avicennia nitida Jacq. Plant Physiol. 45, 169–172 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Larkum, A.W.D., Hill, A. E.: Ion and water transport in Limonium. V. The ionic status of chloroplasts in the leaf of Limonium vulgare in relation to the activity of the salt glands. Biochim. Biophys. Acta 203, 133–138 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Levering, C. A., Thomson, W.W.: The ultrastructure of the salt gland of Spartina foliosa. Planta 97, 183–196 (1971).

    Article  Google Scholar 

  • Levering, C. A., Thomson, W.W.: Studies on the ultrastructure and mechanism of secretion of the salt gland of the grass Spartina. Proc. 30 th Electron Microscope Soc. of America, 222–223 (1972).

    Google Scholar 

  • Lüttge, U.: Funktion und Struktur pflanzlicher Drüsen. Die Naturwissenschaften 53, 96–103 (1966).

    Article  Google Scholar 

  • Lüttge, U.: Aktiver Transport (Kurzstreckentransport bei Pflanzen). Protoplasmatologia 8, 1–146 (1969).

    Google Scholar 

  • Lüttge, U.: Structure and function of plant glands. Ann. Rev. Plant Physiol. 22, 23–44 (1971).

    Article  Google Scholar 

  • Lüttge, U., Osmond, C.B.: Ion absorption in Atriplex leaf tissue. III. Site of metabolic control of light-dependent chloride secretion to epidermal bladders. Australian J. Biol. Sci. 23, 17–25 (1970).

    Google Scholar 

  • Lüttge, U., Pallaghy, C.K.: Light triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport. Z. Pflanzenphysiol. 61, 58–67 (1969).

    Google Scholar 

  • Lüttge, U., Pallaghy, C.K., Osmond, C.B.: Coupling of ion transport in green cells of Atriplex spongiosa leaves to energy sources in the light and in the dark. J. Membrane Biol. 2, 17–30 (1970).

    Article  Google Scholar 

  • Macrobbie, E. A. C.: Fluxes and compartmentation in plant cells. Ann. Rev. Plant Physiol. 22, 75–96 (1971).

    Article  CAS  Google Scholar 

  • Metcalfe, C.R., Chalk, L.: Anatomy of the dicotyledons, Vol.I & II, 1500 p. Oxford: Clarendon Press 1950.

    Google Scholar 

  • Mozafar, A., Goodin, J.R.: Vesiculated hairs: A mechanism for salt tolerance in Atriplex halimus L. Plant Physiol. 45, 62–65 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Osmond, C.B., Lüttge, U., West, K.R., Pallaghy, C.K., Shacher-Hill, B.: Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Australian J. Biol. Sci. 22, 797–814 (1969).

    CAS  Google Scholar 

  • Pollack, G., Waisel, Y.: Salt secretion in Aeluropus litoralis (Willd.) Pari. Ann. Botan. 34, 879–888 (1970).

    Google Scholar 

  • Ruhland, W.: Untersuchungen über die Hautdrüsen der Plumbaginaceen. Ein Beitrag zur Biologie der Halophyfen. J. Wiss. Botan. 55, 409–198 (1915).

    CAS  Google Scholar 

  • Schmidt-Nielsen, K.: Physiology of salt glands. In: Wohlfahrt-Botterman, K.E. (Ed.): Sekretion and exkretion, pp.269–288. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Schmidt-Nielsen, B., Davis, L.E.: Fluid transport and tubular intercellular spaces in reptilian kidneys. Science 159, 1105–1108 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Schnepf, E.: Uber Zellwandstrukturen bei Köpfchendrüsen der Schuppenblätter von Lathraea clandestina L. Planta 60, 473–182 (1964).

    Article  Google Scholar 

  • Schnepf, E.: Licht- und elektronenmikroskopische Beobachtungen an den Trichom-Hydathoden von Cicer arietinum. Z. Pflanzenphysiol. 53, 245–254 (1965).

    CAS  Google Scholar 

  • Schnepf, E.: Sekretion und Exkretion bei Pflanzen. Protoplasmatologia. 8, 1–181 (1969).

    Google Scholar 

  • Scholander, P.F.: How mangroves desalinate seawater. Physiol. Plantarum 21, 251–261 (1968).

    Article  CAS  Google Scholar 

  • Scholander, P.F., Bradstreet, E.D., Hammel, H.T., Hemmingsen, E.A.: Sap concentration in halophytes and some other plants. Plant Physiol. 41, 529–532 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A.: Sap pressure in vascular plants. Sci. 148, 339–345 (1965).

    Article  CAS  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Hemmingsen, E., Garry, W.: Salt balance in mangroves. Plant Physiol. 37 (6), 722–729 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Schtscherback, J.: Uber die Salzausscheidung durch die Blätter vonStatice gmelini. Ber. Deut. Botan. Ges. 28, 30–34 (1910).

    Google Scholar 

  • Shachar-Hill, B., Hill, A. E.: Ion and water transport inLimonium. Biochim. Biophys. Acta 211, 313–317 (1970).

    Article  CAS  Google Scholar 

  • Shimony, C., Fahn, A.: Light and electron microscopical studies on the structure of salt glands of Tamarix aphylla L. J. Linn. Soc. 60, 283–288 (1968).

    Article  Google Scholar 

  • Skelding, A.D., Winterbotham, J.: The structure and development of the hydathodes of Spartina townsendii groves. New Phytol. 38, 69–79 (1939).

    Article  Google Scholar 

  • Skou, J.C: Enzymatic aspects of active linked transport of Na+ and K+ through the cell membrane. Progr. Biophys. Molec. Biol. 14, 131–166 (1964).

    Article  CAS  Google Scholar 

  • Smaoui, M.A.: Differentiation des trichomes chezAtriplex halimus L. C. R. Acad. Sci. 273, 1268–1271 (1971).

    Google Scholar 

  • Stocking, C.: Guttation and bleeding. In: Ruhland, W. (Ed.): Handbuch der Pflanzenphysiologie, Vol.3, pp.489–502. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Thomson, W.W., Liu, L.L.: Ultrastructural features of the salt gland of Tamarix aphylla L. Planta 73, 201–220 (1967).

    Article  Google Scholar 

  • Thomson, W.W., Berry, W.L., Liu, L.L.: Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc. Natl. Acad. Sei. U.S. 63, 310–317 (1969).

    Article  CAS  Google Scholar 

  • Tormey, J. McD., Diamond, J. M.: The ultrastructural route of fluid transport in rabbit gall bladder. J. Gen. Physiol. 50, 2031–2060 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Volken, G.: 1884. Die Kalkdrüsen der Plumbagineen. Ber. Deut. Botan. Ges. 2, 334–342 (1967).

    Google Scholar 

  • Waisel, Y.: Ecological studies on Tamarix aphylla (L.) Karst. III. The salt economy. Plant Soil. 13, 356–364 (1961).

    Article  CAS  Google Scholar 

  • Ziegler, H., Lüttge, U.: Die Salzdrüsen vonLimonium vulgare. I. Die Feinstruktur. Planta 70, 193–206 (1966).

    Article  CAS  Google Scholar 

  • Ziegler, H., Lüttge, U.: Die Salzdrüsen vonLimonium vulgare. II. Die Lokalisierung des Chloride. Planta 74, 1–17 (1967)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Thomson, W.W. (1975). The Structure and Function of Salt Glands. In: Poljakoff-Mayber, A., Gale, J. (eds) Plants in Saline Environments. Ecological Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80929-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80929-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80931-6

  • Online ISBN: 978-3-642-80929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics