Skip to main content

Mechanisms of Anergy in Tuberculosis

  • Chapter
Tuberculosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 215))

Abstract

Immunological hyporesponsiveness (anergy) is a concomitant of diseases due to intracellular pathogens and well-demonstrated in tuberculosis. The expression of anergy in tuberculosis encompasses depression of both delayed-type hypersensitivity (DTH), manifest as depressed tuberculin skin test reaction, and in vitro lymphocyte responses to antigens of Mycobacterium tuberculosis. Evidence for immunosuppression, which appears to be mostly limited to mycobacterial antigens, has been documented in different populations with active tuberculosis worldwide, regardless of prior BCG vaccination status. Whether attenuation of the host responses to antigens of M. tuberculosis that stimulate or maintain protective immunity is a factor in the development of tuberculosis or contributes to the chronicity of the disease is not known. However, it appears that anergy in active tuberculosis is mediated largely through monocytes that display signs of activation, possibly by exposure to mycobacterial antigens or cytokines in situ. M. tuberculosis and its constituents are potent in stimulation of monocytes to produce an array of cytokines, notably transforming growth factor β (TGF-(β), which is suppressive to lymphocytes, deactivates macrophage effector functions, and promotes fibrosis (Wahl 1992). Immunosuppressive circuits are activated in situ as newly recruited monocytes encounter M. tuberculosis and its products; at the site of infection these circuits may contribute to immunopathogenesis, while at local sites of exposure to antigens (skin test) they may modulate the expression of DTH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja SS, Paliogianni F, Yamada H, Balow JE, Boumpas DT (1993) Effect of transforming growth factor-p on early and late activation events in human T cells. J Immunol 150: 3109–3118

    PubMed  CAS  Google Scholar 

  • Andrade-Arzabe R, Machado IV, Fernndez B, Blanca I, Ramirez R, Bianco NE (1991) Cellular immunity in current active pulmonary tuberculosis. Am Rev Respir Dis 143: 496–500

    PubMed  CAS  Google Scholar 

  • Barnes PF, Mistry SD, Cooper CL, Cooper CL, Pirmez C, Rea TH, Modlin RL (1989) Compartmenta-lization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 142: 1114–1119

    PubMed  CAS  Google Scholar 

  • Barnes PF, Fong F-J, Brennan PJ, Twomey PE, Mazumuder A, Modlin RL (1990) Local production of TNFa and IFNy in tuberculous pleuritis. J Immunol 145: 149–154

    PubMed  CAS  Google Scholar 

  • Barnes PF, Mehra V, Rivoire B, Fong SJ, Brennan PJ, Voegtline PM, Houghten RA, Bloom BR, Modlin RL (1992a) Immunoreactivity of a 10 kD antigen of Mycobacterium tuberculosis. J Immunol 148: 1835–1840

    CAS  Google Scholar 

  • Barnes PF, Grisso CL, Abram JF, Band H, Rea TM, Modlin RL (1992b) yS T-lymphocytes in human tuberculosis. J Infect Dis 165: 506–512

    Article  CAS  Google Scholar 

  • Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL (1993) Cytokine production at the site of disease in human tuberculosis. Infect Immun 61: 3482–3489

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Malaviya AN, Naray Anan P, Ragopalan P, Kumar R, Bharadwaj OP (1977) Spectrum of immune response abnormalities in different clinical forms of tuberculosis. Am Rev Respir Dis 115: 207–212

    PubMed  CAS  Google Scholar 

  • Border WA, Rusolahti ER (1992) Transforming growth factor ß in disease: the dark side of tissue repair. J Clin Invest 90: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Pfeuffer I, Schorr E, Siebelt F, Wirth T, Serfling E (1993) Transforming growth factor ß and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a non canonical octamer-binding site. Mol Cell Bio 13: 1155–1162

    CAS  Google Scholar 

  • Brown AE, Reicker TK, Webster HK (1989) Prolonged elevated soluble interleukin-2 receptors in tuberculosis. Am Rev Respir Dis 139: 1036–1038

    PubMed  CAS  Google Scholar 

  • Canessa PA, Fasano L, Lavecchia MA, Torraca A, Schiattone ML (1989) Tuberculin skin test in asymptomatic HIV seropositive carriers. Chest 96: 1215–1218

    Article  PubMed  CAS  Google Scholar 

  • Carlucci S, Beschin A, Tuosto L, Ameglio F, Gandolfo GM, Cocito C, Fiorucci F, Saltini C, Piccolella E (1993) Mycobacterial antigen complex A60-specific T cell response during the course of pulmonary tuberculosis. Infect Immun 61(2): 439–447

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control (1990) Tuberculin reaction in apparently health HIV seropositive and HIV­seronegative women: Uganda. MMWR 39: 638–646

    Google Scholar 

  • Centers for Disease Control (1991) Purified protein derivative (PPD)-tuberculin anergy and HIV infection: guidelines for anergy testing and management of anergic persons at risk of tuberculosis. MMWR 40: 27–38

    Google Scholar 

  • Comstock GW, Livesay VT, Woolpert SF (1974) The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 99: 131–138

    PubMed  CAS  Google Scholar 

  • Cox RA, Downs M, Neimes RE, Ognibene AJ, Yamashita TS, Ellner JJ (1988) Immunogenic analysis of human tuberculosis. J Infect Dis 158: 1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z (1996) Selective induction of TGF3 in human monocytes by lipoarabinomannan of M. tuberculosis. Infect Immun 64: 399–405

    PubMed  CAS  Google Scholar 

  • Daniel TM, Oxtoby MJ, Pinto E, Moreno S (1981) The immune spectrum in patients with pulmonary tuberculosis. Am Rev Respir Dis 123: 556–559

    PubMed  CAS  Google Scholar 

  • Davis J, Rich RR, Van M, Le MV, Pollach MS, Cook RG (1987) Defective antigen presentation and novel structural properties of DR1 from an HLA haplotype associated with 21-hydroxylase deficiency. J Clin Invest 80: 898–904

    Article  Google Scholar 

  • Ellner JJ (1978a) Suppressor adherent cells in human tuberculosis. J Immunol 121: 2573–2578

    CAS  Google Scholar 

  • Ellner JJ (1978b) Pleural fluid and peripheral blood lymphocyte function in tuberculosis. Ann Intern Med 89: 932–933

    CAS  Google Scholar 

  • Ellner JJ (1990) Tuberculosis in the times of AIDS. The facts and the message. Chest 98: 1051–1052

    Article  PubMed  CAS  Google Scholar 

  • Ellner JJ, Spagnuolo PJ, Schacter BZ (1981) Augmentation of selective monocyte functions in tuberculosis. J Infect Dis 144: 391–398

    Article  PubMed  CAS  Google Scholar 

  • Ellner JJ, Boom WB, Edmonds KL, Rich EA, Toossi Z, Wallis RS (1990) Regulation of the immune response to Mycobacterium tuberculosis. In: Ayoub EM et al. (eds) Microbial determinants of virulence and host response. American Society for Microbiology, Washington DC, pp 77–91

    Google Scholar 

  • Enelow RI, Sullivan GW, Carper HT, Mandell G (1992) Induction of MGC formation from in vitro culture of human monocytes with IL-3 and IFNy. Comparison with other simulating factors. Am J Respir Cell Mol Biol 6: 57–62

    PubMed  CAS  Google Scholar 

  • Espevik T, Figari IS, Shalaby MR, Lackides GA, Lewis GD, Shepard HM, Pallandino MAJr (1987) Inhibition of cytokine production by cyclosporin A and transforming growth factor ß.J Exp Med 166: 571–576

    CAS  Google Scholar 

  • Falla JC, Para CA, Mendoza M, Franco LC, Guzmaan F, Orozco O, Patarroyo ME (1991) Indentification of B and T cell epitopes within the MTP 40 protein of M. tuberculosis and their correlation with the disease course. Infect Immun 59: 2265–2273

    PubMed  CAS  Google Scholar 

  • Fontana A, Frei K, Bodmer S, Hoefer E, Scheier MH, Pallandino MA, Zingkernagel M (1989) Transforming growth factor-ß inhibits the generation of cytotoxic T cells in virus infected mice. J Immunol 143: 3220–3234

    Google Scholar 

  • Fujiwara H, Tsuyuguchi I (1984) Frequency of tuberculin-reactive T-lymphocytes in pleural fluid and blood from patients with tuberculous pleuritis. Chest 89: 530–535

    Article  Google Scholar 

  • Fujiwara H, Kleinhenz ME, Wallis RS, Ellner JJ (1986) Increased interleukin-1 production and monocyte suppressor cell activity associated with human tuberculosis. Am Rev Respir Dis 133: 73–77

    PubMed  CAS  Google Scholar 

  • Fullmer MA, Shen J-Y, Modlin RL, Rea TH (1987) Immunohistochemical evidence of lymphokine production and lymphocyte activation antigens in tuberculin reaction. Clin Exp Immunol 67: 383­390

    PubMed  Google Scholar 

  • Graham NMH, Nelson KE, Solomon L, Bonds M, Rizzo RT, Scavotto J, Astemborski J, Vlahov D (1992) Prevalence of tuberculin positivity and skin test anergy in HIV-1 seropositve and seronegative intravenous drug users. JAMA 267: 369–372

    Article  PubMed  CAS  Google Scholar 

  • Grzybowski S, Allen EA (1964) The challenge of tuberculosis in decline: a study based on the epidemiology of tuberculosis in Ontario, Canada. Am Rev Respir Dis 90: 707–720

    PubMed  CAS  Google Scholar 

  • Havlir DV, van der Kupy F, Duffy E, Marshall R, Hom D, Ellner JJ (1991a) A 19 year follow-up of tuberculin reactors: assessment of skin test reactivity and in vitro lymphocyte responses. Chest 99: 1172–1176

    Article  CAS  Google Scholar 

  • Havlir DV, Wallis RS, Boom WH, Daniel TM, Chevernak K, Ellner JJ (1991b) Human immune response to Mycobacterium tuberculosis antigens. Infect Immun 59: 665–670

    CAS  Google Scholar 

  • Havlir DV, Ellner JJ, Chevernak KA, Boom WH (1991c) Selective expansion of human yS T-cells by monocytes infected with live Mycobacterium tuberculosis J Clin Invest 87: 729–733

    Article  CAS  Google Scholar 

  • Heimbeck (1928) Immunity to tuberculosis. Arch Intern Med 41: 336–342

    Google Scholar 

  • Hirsch CS, Yoneda T, Ellner JJ, Averill LE, Toossi Z (1994) Enhancement of intracellular growth of M. tuberculosis in human monocytes by transforming growth factor beta. J Infect Dis 170: 1229­1237

    PubMed  Google Scholar 

  • Holden M, Dubin MR, Diamond PH (1971) Frequency of negative intermediate-strength tuberculin sensitivity in patients with active tuberculosis. N Engl J Med 285: 1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Hunter SW, Gaylord H, Brennan PJ (1986) Structure and antigenicity of the phosophorylated antigens from leprosy and tubercle bacilli. J Biol Chem 261: 12345–12351

    PubMed  CAS  Google Scholar 

  • Hussain R, Dawood G, Obaid M, Toossi Z, Wallis RS, Minai A, Dojki M, Sturm AW, Ellner JJ (submitted) Depressed cellular and augmented humoral responses in patients with active tuberculosis from Pakistan.

    Google Scholar 

  • Huygen K, van Vooren JP, Turneer M, Bosmans R, Dierckx P, De Bruyn J (1988) Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol 27: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Kay AB, Ying S, Varney V, Durham SR, Moqbel R, Wardlaw AJ, Hamid Q (1991) Messenger RNA expression of the cytokine gene cluster, IL-3, IL-4, IL-5, and GM-CSF in allergen-induced late-phase reactions in atopic subjects. J Exp Med 173: 775–779

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Spron MB, Karin M, Roberts AB (1990) Autoinduction of transforming growth factor ß1 is mediated by the AP-1 complex. Mol Cell Biol 10: 1492–1496

    PubMed  CAS  Google Scholar 

  • Kindler V, Syepino AP, Gran GE et al (1989) The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56: 731–740

    Article  PubMed  CAS  Google Scholar 

  • Kleinhenz ME, Ellner JJ (1985) Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes. J Infect Dis 152: 171–176

    Article  PubMed  CAS  Google Scholar 

  • Kleinhenz ME, Ellner JJ (1987) Antigen responsiveness during tuberculosis: regulatory interaction of T-cells subpopulations and adherent cell. J Lab Clin Med 110: 31–40

    PubMed  CAS  Google Scholar 

  • Klienhenz ME, Ellner JJ, Spagnulo PJ, Daniel TM (1981) Suppression of lymphocyte responses by tuberculous plasma and mycobacteril arabinogalctan: monocyte dependence and indomethecin reve rs i b i l ity.68: 153–158

    Google Scholar 

  • Maeda J, Ueki N, Ohkawa T, Iwahashi N, Nakano T, Hada T, Higashino K (1993) Local production and localization of transforming growth factor beta in tuberculous pleurisy. Clin Exp Immunol 92: 32–38

    Article  PubMed  CAS  Google Scholar 

  • McCartney-Francis NL, Wahl SM (1994) Transforming growth factor ß: a matter of life and death.J Leukoc Biol 55: 401–409

    PubMed  CAS  Google Scholar 

  • Miller SD, Jones HE (1973) Correlation of lymphocyte transformation with tuberculin skin-test sensitivity. Am Rev respir Dis 107: 530–538

    PubMed  CAS  Google Scholar 

  • Miyazono K, Heldin CH (1989) Role for carbohydrate structures in TGF-ß 1 latency. Nature 338: 158­160

    Article  PubMed  Google Scholar 

  • Nsubuga P, Whalen C, Johenson JL, Byekwaso F, Okwera A, Mugerwa R, Ellner JJ (1994) Preserved PPD reactivity and frequent cavitary disease as initial clinical manifestations of pulmonary tuberculosis in HIV-infected Ugandans. International conference on AIDS 1994, 7–12; Aug, Vol 10(2), p 28 (abstact no 406B)

    Google Scholar 

  • Ogawa T, Uchida H, Kusumoto Y, Mori Y, Yamamura Y, Hamada S (1991) Increase in tumor necrosis factor alpha and interluekin-6 secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis. Infect Immun 59: 3021–3025

    PubMed  CAS  Google Scholar 

  • Onwubalili JK, Scott GM, Robinson JA (1985) Deficient immune interferon production in tuberculosis. Clin Exp Immunol 59: 405–413

    PubMed  CAS  Google Scholar 

  • Orme IM (1988) Induction of non specific acquired resistance and delayed type hypersensitivity but not specific acquired resistance in mice inoculated with killed mycobacterial vaccines. Infect Immun 56: 3310–3312

    PubMed  CAS  Google Scholar 

  • Orme IM, Collins FM (1984) Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity. Cell Immunol 84: 113–120

    Article  PubMed  CAS  Google Scholar 

  • Orme IM, Miller ES, Roberts AD (1992) T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterirum tuberculosis infection. J Immunol 148: 189–196

    PubMed  CAS  Google Scholar 

  • Pal PG, Horowitz MA (1992) Immunization with extracellular proteins of M. tuberculosis induces cell-mediated immune responses with substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect Immun 60(11): 4782–4792

    Google Scholar 

  • Palmer CE, Edwards LB (1966) The tuberculin test: in retrospect and prospect. The Baker Lecture, presented at the University of Michigan School of Public Health, Ann Arbor, MI

    Google Scholar 

  • Pesanti EL (1994) The negative tuberculin test. Am J Resp Crit Care Med 149: 1699–1709

    PubMed  CAS  Google Scholar 

  • Pilatte Y, Bignon J, Lambre CR (1987) Lysosomal and cytosolic sialidases in rabbit alveolar macrophages, demonstration of increased lysosomal activity after in vivo activation with BCG. Biochem Biophys Acta 923: 150–155

    PubMed  CAS  Google Scholar 

  • Platt JL, Grant BW, Eddy AA, Michael AF (1983) Immune cell populations in cutaneous delayed-type hypersensitivity. J Exp Med 158: 1227–1242

    Article  PubMed  CAS  Google Scholar 

  • Rooney JJ, Crocco JA, Kramer S, Lyons HA(1976) Further observations on tuberculin reactions in tuberculosis. Am J Med 60: 517–522

    Article  PubMed  Google Scholar 

  • Salata RA, Sanson AJ, Malhotra IJ, Wiker HG, Harboe M, Philips NB, Daniel TM (1991) Purification and characterization of the 30,000 dalton native antigen of Mycobacterium tuberculosis and characterization of six monoclonal antibodies reactive with a major epitope of this antigen. J Lab Clin Med 118: 589

    PubMed  CAS  Google Scholar 

  • Schmitt E, Meuret G, Stix L (1977) Monocyte recruitment in tuberculosis and sarcoidosis. Br J Haematol 35: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Shiratsuchi H, Okuda Y, Tsuyuguchi I (1987) Recombinant human IL-2 reverses in vitro deficient cell-mediated immune responses to tuberculin purified derivative by lymphocytes of tuberculous patients. Infect Immun 55: 2126–2131

    PubMed  CAS  Google Scholar 

  • Sieling PA, Abrams JS, Yamamura M, Salgame P, Bloom BR, Rea TH, Modlin RL (1993) Immunosuppressive roles for IL-10 and IL-4 in human infection. J Immunol 150: 5501–5510

    PubMed  CAS  Google Scholar 

  • Stead WW (1969) The new face of tuberculosis. Hosp Prac 4: 62

    Google Scholar 

  • Stead WW (1981) Tuberculosis among elderly persons: an outbreak in a nursing home. Ann Intern Med 94: 606–610

    PubMed  CAS  Google Scholar 

  • Street NE, Mossman TR (1991) Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J 5: 171–175

    PubMed  CAS  Google Scholar 

  • Surcel HM, Tory-Blomberg M, Paulie S, Anderson G, Moreno C, Pasvol G, Ivanyi J (1994) TH1/TH2 profiles in tuberculosis, based on the proliferation and cytokine response of blood lymphocytes to mycobacterial antigens. Immunology 81: 171–176

    PubMed  CAS  Google Scholar 

  • Takashima T, Ueta C, Tsuyuguchi I, Kishimoto S (1990) Production of tumor necrosis factor by monocytes from patients with pulmonary tuberculosis. Infect. Immun 58: 3286–3292

    CAS  Google Scholar 

  • Tazi A, Bouchonnet F, Valeyre O, Battesti JP, Hance AJ (1992) Characterization of 78 T lymphocytes in the peripheral blood of patients with active tuberculosis. Am Rev Respir Dis 146: 1216–1221

    PubMed  CAS  Google Scholar 

  • Theuer CP, Hopewell PC, Elias D, Schecter GF, Rutherford GW, Chaisson RF (1990) Human immunodeficiency virus infection in tuberculosis patients. J Infect Dis 162: 8–12

    Article  PubMed  CAS  Google Scholar 

  • Toossi Z, Kleinhenz ME, Ellner JJ (1986) Defective interleukin-2 production and responsiveness in human pulmonary tuberculosis. J Exp Med 163: 1162–1172

    Article  PubMed  CAS  Google Scholar 

  • Toossi Z, Edmonds KE, Tomford WJ, Ellner JJ (1989) Suppression of PPD-induced interleukin-2 production by interaction of CD 16 lymphocytes and adherent mononuclear cells in tuberculosis. J Infect Dis 159: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Toossi Z, Lapurga JP, Ondash R, SedorJr, Ellner JJ (1990) Expression of functional interleukin 2 receptors by peripheral blood monocytes from patients with active pulmonary tuberculosis. J Clin Invest 85: 1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Toossi Z, Sierra-Madero JG, Blinkhorn RA, Mettler MA, Rich EA (1993) Enhanced susceptibility of blood monocytes from patients with pulmonary tuberculosis to productive infection with human immunodeficiency virus. J Exp Med 177: 1511–1517

    Article  PubMed  CAS  Google Scholar 

  • Toossi Z, Young TG, Averill LE, Hamilton BD, Shiratsuchi H, Ellner JJ (1995a) Induction of Transforming growth factor-p (TGF-ß) by purified protein derivative (PPD) of mycobacterium tuberculosis. Infect Immun 63: 224–228

    CAS  Google Scholar 

  • Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ (1995b) Enhanced production of transforming growth factor-ß (TGF-J) by blood monocytes from patients with active tuberculosis and presence of TGFp in tuberculous granlomatous lung lesions. J Immunol 154: 465–473

    CAS  Google Scholar 

  • Toossi Z, Hirsch CS, Hamilton BD, Knuth CK, Friedlander MA, Rich EA (1996) Decreased production of transforming growth factor 01 (TGF-ß1) in human alveolar macrophages. J Immunol (in press)

    Google Scholar 

  • Torres M, Mendez-Sampiero P, Jimenez-Zamudio L, Teran L, Camerena A, Quezada R, Ramos E, Sada E (1994) Comparison of the immune response against Mycobacterium tuberculosis antigens between a group of patients with active pulmonary tuberculosis and healthy household contacts. Clin Exp Immunol 96: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Tsicopoulos A, Hamid Q, Varney V, Ying V, Moqbel R, Durham SR, Kay AB (1992) Preferential messenger RNA expression of Th1-type cells (IFN gamma+, IL-2+) in classical delayed-type (tuberculin) hypersensitivity reactions in human skin. J Immunol 148: 2058–2061

    PubMed  CAS  Google Scholar 

  • Tsunawki S, Spron M, Nathan C (1988) Deactivation of macrophages by TGF 3. Nature 334: 260–264

    Article  Google Scholar 

  • Tsuyuguchi I, Kawasumi H, Ueta C, Yano I, Kishimoto S (1991) Increase of T-Cell Receptor gamma/delta-bearing T cells in cord blood of newborn babies obtained by in vitro stimulation withmycobacterial cord factor. Infect Immun 59: 3053–3059

    PubMed  CAS  Google Scholar 

  • Tweardy DJ, Schacter BZ, Ellner JJ (1984) Association of altered dynamics of monocyte surface expression of human leukocyte antigen-DR with immunosuppression in tuberculosis. J Infect Dis 149: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Valone SE, Rich EA, Wallis RS, Ellner J (1988) Expression of Tumor Necrosis Factor In Vitro by human mononuclear phagocytes stimulated with whole mycobacterium bovis BCG and mycobacterial antigens. Infect Immun 56: 3313–3315

    PubMed  CAS  Google Scholar 

  • Vanham G, Edmonds KE, Qing L, Hom D, Toossi Z, Joness B, Daley C, Huebner R, Kestens L, Gigase P, Ellner JJ (submitted) Global immune activation during M. tuberculosis infection in humans.

    Google Scholar 

  • Vilcek J, Klion A, Henriksen-DeStefano D, Zemtsov A, Davidson DM, Davidson M, Friedman-Kien A (1986) Defective gamma-interferon production in peripheral blood leukocytes of patients with acute tuberculosis. J Clin Immunol 6: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Vordemeier HM, Harris DP, Friscia G, Roman E, Surcel HM, Moreno C, Pasvol G, lvanyi J (1992) T cell repertoire in tuberculosis: Selective energy to an immunodominant epitope of the 380kDa antigen in patients with active disease. Eur J Immunol 22: 2631–2637

    Article  Google Scholar 

  • Wahl S (1992) Transforming growth factor Beta: a cause and a cure. J Clin Immunol 2: 61–71

    Article  Google Scholar 

  • Wallis RS, Fujiwara H, Ellner JJ (1986) Direct stimulation of monocyte release of interleukin 1 by mycobacterial protein antigens. J Immunol 136: 193–196

    PubMed  CAS  Google Scholar 

  • Wallis RS, Paranjape R, Phillips M (1993) Identification by two-dimensional gel electrophoresis of a 58­kilodalton tumor necrosis factor-inducing protein of Mycobacterium tuberculosis. Infect Immun 61: 627–632

    PubMed  CAS  Google Scholar 

  • Welch GR, Wong HL, Wahl SM (1990) Selective induction of Fc gamma RIII on human monocytes by transforming growth factor P. J Immunol 144: 3444–3448

    PubMed  CAS  Google Scholar 

  • Wu CY, Demeure C, Kiniwa M, Gately M, Delepess G (1993) IL-2 induces the production of IFN-y by neonatal human CD4 T cells. J Immunol 151: 1938–1949

    PubMed  CAS  Google Scholar 

  • Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL (1991) Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Gately MK, Modlin RL, Barnes PF (1994) Interleukin 12 at the site of disease in tuberculosis. J Clin Invest 93: 1733–1739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toossi, Z., Ellner, J.J. (1996). Mechanisms of Anergy in Tuberculosis. In: Shinnick, T.M. (eds) Tuberculosis. Current Topics in Microbiology and Immunology, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80166-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80166-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80168-6

  • Online ISBN: 978-3-642-80166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics