Skip to main content

Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai

  • Chapter
Carbonatite Volcanism

Part of the book series: IAVCEI Proceedings in Volcanology ((VOLCANOLOGY,volume 4))

Abstract

New low-pressure, low-temperature experiments (50–375 MPa, 700–850°C) utilizing starting compositions of carbonated peralkaline nephelinite have generated immiscible carbonatite liquids that are alkali-rich. The results suggest the P-T conditions operating to produce the Oldoinyo Lengai natrocarbonatite lavas are quite low i.e. ≤100 MPa and ≤750°C. These low temperatures are consistent with both calculated (silicate) and measured (carbonate) eruption temperatures for lavas from Oldoinyo Lengai. The conjugate silicate liquids are of peralkaline wollastonite nephelinite composition. The differentiation of peralkaline wollastonite nephelinite strongly depends on both pressure and to what degree the melt is saturated in CO2. High pressure coupled with CO2 saturation favours formation of an immiscible alkalic carbonate liquid, which becomes increasingly K2O-rich with lower pressures of exsolution (P ≤ 200 MPa). Exsolution of an alkali-rich carbonate liquid from a silicate melt during further cooling and differentiation buffers the peralkalinity of the residual silicate liquid at near constant peralkalinity ([Na+K]/Al≈2.15). At very low pressure (P ≤ 35 MPa) and CO2 undersaturated conditions, carbonate liquid is not exsolved, and wollastonite nephelinite fractionate to exceptionally peralkaline [Na+K]/Al=4.0–7.0) combeite-bearing nephelinite. Liquid natrocarbonatite and combeite nephelinite are not conjugate, but may be expected to be closely associated. Alkalic carbonate liquids exsolved at low temperatures (≤800 °C) are saturated with ferromagnesian solid phase(s) and are not superheated. Differentiation of alkalic carbonate melts (after these liquids have separated from their silicate host), consisting of fractionation of previously formed ferromagnesians, coupled with the precipitation of nyerereite+gregoryite produces a halogen-rich and SiO2, TiO2, A12O3, MgO and FeO depleted natrocarbonatite magma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cooper AF, Gittins G, Tuttle OF (1975) The system Na2CO3-K2CO3-CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Am J Sci 275:534–560.

    Article  Google Scholar 

  • Dawson JB (1962a) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195:1075–1076.

    Article  Google Scholar 

  • Dawson, JB (1962b) The geology of Oldoinyo Lengai. Bull Volcanol 24:349–387

    Article  Google Scholar 

  • Dawson JB (1989) Sodium carbonate extrusions from Oldoinyo Lengai, Tanzania: implications for carbonatite complex genesis. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 255–277.

    Google Scholar 

  • Dawson JB, Garson MS, Roberts B (1987) Altered former alkalic lavas from Oldoinyo Lengai, Tanzania: implications for calcite carbonatite lavas. Geology 15:765–768.

    Article  Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1989) Combeite (Na2.33Ca1.74others0.12.)Si3O9 from Oldoinyo Lengai, Tanzania. J Geol 97:365–372.

    Article  Google Scholar 

  • Deans T, Roberts R (1984) Carbonatite tuffs and lava clasts of the Tinderet foothills, western Kenya: a study in calcified natrocarbonatites. J Geol Soc Lond 141:563–580.

    Article  Google Scholar 

  • Donaldson CH, Dawson JB (1978) Skeletal crystallization and residual glass compositions in a cellular alkalic pyroxenite nodule from Oldoinyo Lengai. Contrib Mineral Petrol 67:139–149.

    Article  Google Scholar 

  • Donaldson CH, Dawson JB, Kanaris-Sotiriou R, Batchelor RA, Walsh NJ (1987) The silicate lavas of Oldoinyo Lengai, Tanzania. Neues Jahrb Min Abh 156:247–279.

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min Mag 51:431–435.

    Article  Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites: an experimental study. Contrib Mineral Petrol 73:105–117.

    Article  Google Scholar 

  • Hamilton DL (1961) Nephelines as crystallization emperature indicators. J Geol 69:321–329.

    Article  Google Scholar 

  • Hamilton DL, Freestone IC, Dawson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature 279:52–54.

    Article  Google Scholar 

  • Hamilton DL, Bedson P, Esson J (1989) The behaviour of trace elements in the evolution of carbonatites. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 405–427.

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1976) The crystal chemistry of melanites and schorlomites. Carnegie Inst Wash Year Book 75:705–711.

    Google Scholar 

  • Jago BC, Gittins J (1991) The role of fluorine in carbonatite magma evolution. Nature 349:56–58.

    Article  Google Scholar 

  • Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645.

    Article  Google Scholar 

  • Kjarsgaard BA (1990) Nephelinite-carbonatite genesis: experiments on liquid immiscibility in alkali silicate-carbonate systems. PhD Thesis, University of Manchester.

    Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989a) Melting experiments on Shombole nephelinites: silicate/ carbonate liquid immiscibility, phase relations and the liquid line of descent. Geol Assoc Can/Mineral Assoc Can Progr with Abstr 14:A50.

    Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989b) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites — genesis and evolution. Unwin Hyman, London, pp 388–404.

    Google Scholar 

  • Kjarsgaard BA, Peterson TD (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: pétrographie and experimental evidence. Min Petrol 43:293–314.

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1963) Experimental data bearing on the role of liquid immiscibility in the genesis of carbonatites. Nature 199:801–802

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1966) Liquid immiscibility in the system Na2O-Al2O3-SiO2-CO2 at pressures up to 1 kilobar. Am J Sci 264:234–255

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1968) Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O. Am J Sci 266:932–967.

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1973) Liquid immiscibility in the join NaAlSi3O8-CaAl2Si2O8-Na2CO3-H2O. Am J Sci 273:465–487..

    Article  Google Scholar 

  • LeBas MJ (1981) Carbonatite magmas. Min Mag 44:133–40 Alkaline

    Article  Google Scholar 

  • LeBas MJ (1987) Nephelinites and carbonatites. In: Fitton JG, Upton BGJ (eds) Alkaline isneous rocks. Blackwell, London, pp 53–85.

    Google Scholar 

  • LeBas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatities — genesis and evolution. Unwin Hyman, London, pp 428–447

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mm Petrol 39:55–76.

    Article  Google Scholar 

  • Pan V, Holloway JR, Hervig RL (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim Cosmochim Acta 55:1587–1595.

    Article  Google Scholar 

  • Peterson TD (1987) The petrogenesis and evolution of nephelinite-carbonatite magmas. PhD Thesis, Johns Hopkins University, Baltimore (unpublished).

    Google Scholar 

  • Peterson TD (1989a) Peralkaline nephelinites I. Comparative petrology of Shombole and Oldoinyo Lengai, East Africa. Contrib Mineral Petrol 101:458–478.

    Article  Google Scholar 

  • Peterson TD (1989b) Peralkaline nephelinites II. Low pressure fractionation and the hypersodic lavas of Oldoinyo Lengai. Contrib Mineral Petrol 102:336–346.

    Article  Google Scholar 

  • Peterson TD (1990) Petrology and genesis of natrocarbonatite. Contrib Mineral Petro 105:143–155.

    Article  Google Scholar 

  • Stolper E, Fine G, Johnson T, Newman S (1987) Solubility of carbon dioxide in albitic melt. Am Mineral 72:1071–1085.

    Google Scholar 

  • Toulmin P III, Barton PB Jr (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim Cosmochim Acta 28:641–671..

    Article  Google Scholar 

  • Twyman JD, Gittins J (1987) Alkalic carbonatite magmas: parental or derivative? In. Fitton JG Upton BGJ (eds) Alkaline igneous rocks. Blackwell, London, pp 85–94.

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1960) The system CaO-CO2-H2O and the origin of carbonatites. J Petrol 1:1–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kjarsgaard, B.A., Hamilton, D.L., Peterson, T.D. (1995). Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. In: Bell, K., Keller, J. (eds) Carbonatite Volcanism. IAVCEI Proceedings in Volcanology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79182-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79182-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79184-0

  • Online ISBN: 978-3-642-79182-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics