Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 113))

Abstract

The present vegetation-climate relationships have been used to deduce past climate based on paleoecological indicators of past vegetation (Grichuk et al. 1984; COHMAP) and to predict future vegegation distribution based on General Circulation Model projections of future climate (Pastor and Post 1988). The implicit assumption behind these climatic reconstructions is that climate is the major factor determining vegetation distribution. However, animals also strongly influence the species composition, structure, and processes of ecosystems (O’Neill 1976), including boreal forest (Pastor et al. 1988; Bryant et al. 1991) and tundra (Batzli et al. 1980). Consequently, changes in animal abundance can radically alter the structure and species composition of vegetation (Bond 1993), for example, converting grassland to shrubland or forest (Owen-Smith 1987; Schlesinger et al. 1990). Predicting the future structure and distribution of ecosystems (Pastor and Post 1988; IGBP 1990) may, therefore, require consideration of animal diversity and trophic interactions as well as direct effects of climate on vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Batzli GO (1977) The influence of grazers on tundra vegetation and soils. Circumpolar Conf on Northern ecology, Proc 1: 215–225

    Google Scholar 

  • Batzli GO, Sobaski S (1980) Distribution, abundance, and foraging patterns of ground squirrels near Atkasook, Alaska. Arct Alp Res 12: 501–510

    Article  Google Scholar 

  • Batzli GO, White RG, MacLean SF Jr, Pitelka FA, Collier BD (1980) The herbivore-based trophic system. In: Brown J, Miller PC, Tieszen, LL, Bunnel FL (eds) An arctic ecosystem: the coastal tundra at Barrow, Alaska. Dowden, Hutchinson and Ross, Stroudsburg, pp. 335–410

    Google Scholar 

  • Bond WJ (1993) Keystone species. In: Schulze E-D, Mooney HA (eds) Ecosystem function and biodiversity. Springer Berlin Heidelberg New York, pp 237–253

    Google Scholar 

  • Bryant JP, Chapin FS III (1986) Browsing-woody plant interactions during boreal forest plant succession. In; Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga; a synthesis of structure and function. Springer Berlin Heidelberg New York, pp. 213–225

    Google Scholar 

  • Bryant JP, Kuropat PJ (1980) Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry Annu Rev Ecol Syst 11: 261–285

    Article  CAS  Google Scholar 

  • Bryant JP, Provenza FP, Pastor, J, Reichardt PB, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22: 431–446

    Article  Google Scholar 

  • Chapin FS III (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp. 67–88

    Google Scholar 

  • Chapin FS III(1993) Functional role of growth forms in ecosystem and global processes. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic Press, San Diego, pp. 287–312

    Google Scholar 

  • Chapin FS III, Shaver GR (1981) Changes in soil properties and vegetation following disturbance in Alaskan arctic tundra. J Appl Ecol 18: 605–617

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1985) Individuahstic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564–576

    Article  Google Scholar 

  • Chapin FS III, McKendrick JD, Johnson DA (1986) Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: implications for herbivores. J Ecol 74:707–731

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR, Gibbin AE, Nadelhoffer KG, Laundre JA (1994) Response of arctic tundra to experimental and observed changes in climate., Ecology (in press)

    Google Scholar 

  • Chernov YI (1978) Struktura zhivotnogo naseleniia Subarktiki, Nauka, Moscow

    Google Scholar 

  • Chernov YI (1980) Zhizn’ tundry. Mysl’, Moscow

    Google Scholar 

  • Chernov YI, Matveeva N V, Zanokha LL (1983) Opyt izucheniia prirosta tsvetkovykh rastenii V coobshchestvakh Taimyra. Dokl Akad Nauk SSSR 272: 999–1002

    Google Scholar 

  • COHMAP (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241: 1043–1052

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry J A (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54: 107–136

    Article  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66: 631–650

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Field C, Chapin FS III, Matson PA, Mooney H A (1992) Responses of terrestrial ecosystems to the changing atmosphere:a resource-based approach. Annu Rev Ecol Syst 23: 201–235

    Article  Google Scholar 

  • Fox JF (1978) Forest fires and the snowshoe hare-Canada lynx cycle. Oecologia 31: 349–374

    Article  Google Scholar 

  • Grichuk V P (1984) Late Pleistocene vegetation history. In: Velichko A A (eds) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp. 155–178

    Google Scholar 

  • Grichuk VP, Gurtovaya YY, Zelikson EM, Borisova OK (1984) Methods and results of Late Pleistocene paleoclimatic reconstructions. In: Velichko AA (eds) Late Quaternary environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp 251–260

    Google Scholar 

  • Guthrie RD (1990) Frozen fauna of the mammoth steppe: the story of Blue Babe. University of Chicago Press, Chicago

    Google Scholar 

  • Haynes G (1982) Utilization and skeletal disturbances of North American prey carcasses. Arctic 35:266–281

    Google Scholar 

  • Hopkins DM (1967) The Cenozoic history of Beringia-a synthesis. In: Hopkins DM (eds) The Bering land bridge. Stanford University Press, Stanford, pp 451–484

    Google Scholar 

  • Hopkins DM, Matthews JJV, Schweger CE, Young SB (eds) (1982) Paleoecology of Beringia, Academic Press, New York

    Google Scholar 

  • IGBP (1990) The international geosphere-biosphere programme: a study of global change. Rep No 12. IGBP Secretariat, Stockholm

    Google Scholar 

  • Johnson LC, Damman AWH (1991) Species controlled Sphagnum decay on a South Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Kriuchkov VV (1973) Krainii Sever: problemy ratsional’nogo ispol’zovaniia prirodnykh resursov. Mysl’, Moscow

    Google Scholar 

  • Kucheruk VV (1985) Travoiadnye mlekopitaiushchie v aridnykh ekosisemakh vnetropicheskoi Evrasii. In: Sokolov BE (eds) Mlekopitaiushchie v nazemnykh ekosistemakh. Nauka, Moscow, pp 166–224

    Google Scholar 

  • Manabe S, Broccoli AJ (1985) The influence of continental ice sheets on the climate of an ice age J Geophys Res 90D:2167–2190

    Article  Google Scholar 

  • Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions. University of Arizona Press, Tucson, pp 354–403

    Google Scholar 

  • McKendrick JD, Ott VJ, Mitchell GA (1978) Eff’ects of nitrogen and phosphorus fertilization on carbohydrate and nutrient levels in Dupontia fisheri and Arctagrostis latifolia. In: Tieszen LL (eds) Vegetation and production ecology of an Alaskan arctic tundra. Springer, Berlin Heidelberg, New York, pp 509–537

    Chapter  Google Scholar 

  • McKendrick JD, Batzh GO, Everett KR, Swanson JC (1980) Some effects of mammalianherbivores and fertilization on tundra soils and vegetation. Arct Alp Res 12:565–578

    Article  Google Scholar 

  • McNaughton SJ (1979) Grazing as an optimization process: grass-ungulate relationships in theb Serengeti.Am Nat 113:691–703

    Google Scholar 

  • O’Neill RV (1976) Ecosystem persistence and heterotrophic regulation. Ecology 57:1244–1253

    Article  Google Scholar 

  • Owen-Smith RN (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13:351–362

    Google Scholar 

  • Pastor J, Post WM (1988) Responses of northern forests to C02-induced climate change. Nature 334:55–58

    Article  Google Scholar 

  • Pastor J, Naimen RJ, Dewey B, Mclnnes P (1988) Moose, microbes, and the boreal forest. Bioscience 38:770–777

    Article  Google Scholar 

  • Peshkova NV, Andreiashchkina NI (1983) Produktivnost’ dvukh podvidov Carex aquatilis i eè izmenenie pod vliianiem mnogokratnogo otchuzhdeniia nadzemnoi biomassy. Ekologiia 4:30–35

    Google Scholar 

  • Rind D (1987) Components ofthe ice age circulation. J Geophys Res 92D:4241–4281

    Article  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FS III (1986) Effect of fertilizer on production and biomass of tussock tundra, Alaska, U.S.A. Arct Alp Res 18:261–268

    Article  Google Scholar 

  • Sher AV (1988) Sreda obitaniia plio-pleistotsenovykh mlekopitaiushchikh severo-vostochnoi Siberi. Stratigraphiia i korreliatsiia chetvertichnykh otlozhenii Azii i Tikhookeanskogo regiona. Akademii Nauk SSSR, Vladivostok, pp 78–79

    Google Scholar 

  • Skre O, Oechel WC (1979) Moss production in a black spruce Picea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands. Holarct Ecol 2:249–254

    CAS  Google Scholar 

  • Skre O, Oechel WC (1981) Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48:50–59

    Article  Google Scholar 

  • Thing H (1984) Feeding ecology of the West Greenland caribou (Rangifer tarandus groen-landicus) in the Sismiut Kangerlussuaq region. Dan Rev Game Biol 12:1–52

    Google Scholar 

  • Tishkov AA (1985) Rastitel’noiadnye mlekopitaiushchie v ekosistemakh tundry. In: Sokolov VE (eds) Mlekopitaiushchie v nazemnykh ekosistemakh. Nauka, Moscow, pp 38–67

    Google Scholar 

  • Tormirdiaro SV (1978) Natural process and development of territories ofthe permafrost zone. Nedra Press, Moscow

    Google Scholar 

  • Van Cleve K, Dryness CT, Viereck LA, Fox J, Chapin FS III, Oechel WC (1983) Taiga ecosystems in interior Alaska. Bioscience 41:78–88

    Article  Google Scholar 

  • Van Cleve K, Chapin FS III, Dryness CT, Viereck LA, (1991) Element cychng in taiga forest: state-factor control. Bioscience 41:78–88

    Article  Google Scholar 

  • West FH (1981) The archaeology of Beringia. Columbia University Press, New York

    Google Scholar 

  • White RG, Trudell J (1980) Habitat preference and forage consumption by reindeer and caribou near Atkasook, Alaska. Arct Alp Res 12:511–529

    Article  Google Scholar 

  • Wolff JO (1980) The role of habitat patchiness in the population dynamics of snowshoe hares.Ecol Monogr 50:111–129

    Article  Google Scholar 

  • Yurtsev BA (1974) Steppe communities in the Chukotka tundra and the Pleistocene “tundra-Steppe”. Bot Zh 59:484–501

    Google Scholar 

  • Zimov SA (1990) Chelovek i priroda Se vera: garmoniia protivopolozhnostei. Vestn Akad Nauk SSSR 2:118–133

    Google Scholar 

  • Zimov SA, Chuprynin VI (1991) Ekosistemy: ustoichivost’, konkurentsia tslenapravlennoye preobrazovanie. Nauka,Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimov, S.A., Chuprynin, V.I., Oreshko, A.P., Chapin, F.S., Chapin, M.C., Reynolds, J.F. (1995). Effects of Mammals on Ecosystem Change at the Pleistocene-Holocene Boundary. In: Chapin, F.S., Körner, C. (eds) Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Ecological Studies, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78966-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78966-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78968-7

  • Online ISBN: 978-3-642-78966-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics