Skip to main content

Chemistry in Three Dimensions

  • Conference paper
Chemical Structures 2

Abstract

Prior to van’t Hoff and Le Bel, chemistry was two-dimensional. Since 1874, however, we have had to deal with the third dimension in molecular models, projection formulae, configurational descriptors and, most recently, computer algorithms used to describe and specify configuration. The problem is complicated because chirality, an important aspect of three-dimensional structure, is an attribute of the molecule as a whole whereas the commonly used Cahn-Ingold-Prelog configurational descriptors require factorisation of chirality into individual chiral elements. This paper deals with the history of chirality and the present status of describing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stereochemistry and Biological Activity of Drugs ; Ariëns, E.J.; Soudijn, W.; Blackwell: Cambridge MA, 1983.

    Google Scholar 

  2. Drug Stereochemistry: Analytical Methods and Pharmacology ; Wainer, I.W.; Drayer, D.E., Eds.; Marcel Dekker: New York, 1988.

    Google Scholar 

  3. Chemicals in Agriculture: Volume 1: Stereoselectivity of Pesticides: Biological and Chemical Problems ; Ariëns, E.J.; Van Rensen, J.J.S.; Welling, W., Eds.; Elsevier: Amsterdam, 1988.

    Google Scholar 

  4. Pasteur, L. ‘Researches in Molecular Asymmetry of Natural Organic Products’ (1860) Alembic Club Reprint No. 14: Edinburgh, 1905. ( Note the erroneous translation from ‘Recherches sur la Dissymétrie Moléculaire’.... )

    Google Scholar 

  5. Foundations of Stereochemistry ; Richardson, G.M., Ed.; American Book Company: New York, 1901.

    Google Scholar 

  6. Biot, J.B. Bull. Soc. Philomath. Paris 1815, 190.

    Google Scholar 

  7. Biot, J.B. Bull. Soc. Philomath. Paris 1816, 125.

    Google Scholar 

  8. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light; Thomson, W. (Lord Kelvin); C.J. Clay and Sons: London 1904.

    Google Scholar 

  9. van’t Hoff, J.H. ‘Voorsteel tot uidbreiding der tegenwoordig in de scheikunde gebruikte structuur-formules in de ruimte’. Arch. Nerl. Sci. Exact et Nat. 1874, 9, 445–454.

    Google Scholar 

  10. Le Bel, J.A. ‘Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir de leurs dissolutions’ Bull. Soc. Chim. Fr. 1874, (2) 22, 337–347.

    Google Scholar 

  11. Werner, A. ‘Zur Kenntnis des asymmetrischen Kobalt atoms I.’ Ber. Dtsch. Chem. Ges. 1911, 44, 1887–1898.

    Article  CAS  Google Scholar 

  12. Mislow, K. ‘On the Classification of Pairwise Relations Between Isomeric Structures’. Bull. Soc. Chim. Belg. 1977, 86, 595–601.

    Article  CAS  Google Scholar 

  13. Vennesland, B. ‘Stereospecificity in Biology’. Top. Curr. Chem. 1974, 48, 39–65.

    Article  CAS  Google Scholar 

  14. Easson, L.H.; Stedman, E. ‘Studies on the Relationship Between the Chemical Constitution and Physiological Action. V. Molecular Dissymetry and Physiological Activity’. Biochem. J. 1933, 27, 1257–1266.

    CAS  Google Scholar 

  15. Bergmann, M. ‘Synthesis and Degradation of Proteins in The Laboratory and in Metabolism’. Science 1934, 79, 439–445.

    Article  CAS  Google Scholar 

  16. Ogston, A.G. ‘Interpretation of Experiments on Metabolic Processes Using Isotopic Tracer Elements’. Nature 1948, 162, 963.

    Article  CAS  Google Scholar 

  17. Mitscherlich, E.A. C.R. Séances Acad. Sci. 1844, 19, 720.

    Google Scholar 

  18. Enantiomers, Racemates, and Resolutions ; Jacques, J.; Collet A.; Wilen, S.H.; Wiley- Interscience: New York, 1981.

    Google Scholar 

  19. Cahn, R.S.; Ingold, C. K.; Prelog, V. ‘Specification of Molecular Chirality’. Angew. Chem. Int. Ed. Engl. 1966, 5, 385–415.

    Article  CAS  Google Scholar 

  20. Prelog, V., Helmchen, G. ‘Basic Principles of the CIP-System and Proposals for a Revision’. Angew. Chem. Int. Ed. Engl., 1982, 21, 567–583.

    Article  Google Scholar 

  21. Barton, D.H.R. ‘The Conformation of the Steroid Nucleus’. Experientia 1950, 6, 316–320.

    Article  CAS  Google Scholar 

  22. Barton, D.H.R. ‘The Conformation of the Steroid Nucleus’. Top. Stereochem. 1971, 6, 1–10.

    Article  Google Scholar 

  23. Conformational Analysis; Eliel, E.L.; Allinger, N.L.; Angyal, S.J.; Morrison, G.A.; Wiley-Interscience: New York, 1965.

    Google Scholar 

  24. Winstein, S.; Holness, N. J. ‘Neighboring Carbon and Hydrogen. XIX. t-Butylcyclohexyl Derivatives. Quantitative Conformational Analysis’. J. Am. Chem. Soc. 1955, 77, 5562–5578.

    Article  CAS  Google Scholar 

  25. Eliel, E.L.; Ro, R.S. ‘Conformational Effects in SN2 Reactions’. Chem. Ind. 1956, 251–252.

    Google Scholar 

  26. Allinger, N.L.; Yuh, Y.H.; Lii, J.-H. ‘Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1.’ J. Am. Chem. Soc. 1989, 111, 8551–8566.

    Article  CAS  Google Scholar 

  27. After the present conference ended, the author learned (Ricketts, D.M. personal communication, June 7, 1990) that program COBRA, marketed by Oxford Molecular, can generate multiple low-energy conformations from two-dimensional constitutional formula. The problem remains that if all low-energy conformations are stored, the database may become excessively large; if, on the other hand, the multiple conformation search is carried out ‘on the fly’ (the conformations are generated as the search proceeds) the demand for CPU capacity may be excessive.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eliel, E.L. (1993). Chemistry in Three Dimensions. In: Warr, W.A. (eds) Chemical Structures 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78027-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78027-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78029-5

  • Online ISBN: 978-3-642-78027-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics