Skip to main content

The Influence of Gloeocapsomorpha prisca on the Organic Geochemistry of Oils and Organic-Rich Rocks of Late Ordovician Age from Canada

  • Chapter
Early Organic Evolution

Abstract

There has recently been considerable interest in the geochemistry of Ordovician oils and source rocks. Here, organic petrological, Rock-Eval and especially biomarker data are presented for three sets of Late Ordovician organic-rich rocks from Canada that have different geochemical characteristics. The Yeoman kukersites from the Saskatchewan portion of the Williston Basin are representative of those Ordovician samples reported previously to have a distinctive chemical character (e.g. very low concentrations of acyclic isoprenoids and high concentrations of monocyclic alkanes). This distinctive chemistry is principally determined by the main contributor to the organic matter of these samples, Gloeocapsomorpha prisca, and the minimal microbial reworking of the primary organic matter during diagenesis. The Collingwood oil shale samples from southern Ontario also show chemical and optical evidence of a significant contribution by G. prisca to their organic matter. However, in this case there were also inputs from other algae and especially bacteria (as is evident from the predominantly amorphous appearance of the organic matter) which diluted the “classic” kukersite chemistry. The third group of samples are from Southampton Island in the eastern Canadian Arctic. There is no evidence that these oil shales received any contribution from G. prisca; and their biomarker characteristics suggest that they were deposited under hypersaline conditions.

The occurrence of kukersites and “diluted kukersites” are reviewed both in terms of paleogeography and age. Also discussed are geochemical details of a sample from the Middle Cambrian Mount Cap Formation of the Canadian Northwest Territories that shares many of the features of Ordovician kukersites. It is suggested that the organism which contributed to the organic matter of this sample may have been a direct biological precursor of G. prisca. Finally, some possible reasons for the absence of G. prisca in sediments younger than the Ordovician are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamczak A (1963) G. prisca Zalessky (sinnice) z Ordowick-ich glazow narzutwych Poliski. Acta Palaeontol Pol 8:465–472

    Google Scholar 

  • Alexander R, Cumbers M, Kagi RI (1984) Geochemistry of some Canning Basin crude oils. In: Purcell PG (ed) The Canning Basin. W. A. Proc Geol Soc Aust/Petrol Explor Soc Aust Symp, pp 353–358

    Google Scholar 

  • Allan J, Bjorøy M, Douglas AG (1980) A geochemical study of the exinite group maceral alginite selected from three Permo-Carboniferous torbanites. In: Douglas AG, Maxwell JR (eds) Advances in Organic Geochemistry 1979. Pergamon, Oxford, pp599–618

    Google Scholar 

  • Anderson R, Kates M, Baedecker MJ, Kaplan IR, Ackman RG (1977) The steroisomeric composition of phytanyl chains in lipids of Dead Sea sediments. Geochim Cosmochim Acta 41: 1381 -1390

    Article  Google Scholar 

  • Aquino Neto FR, Trendel JM. Restle A, Connan J, Albrecht P (1983) Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In: Bjorøy M (ed) Advances in Organic Geochemistry 1981. Wiley Heyden, Chichester, pp 207–227

    Google Scholar 

  • Bain HF (1906) Zinc and lead deposits of the upper Mississippi Valley. USGS Bull 294:255 pp

    Google Scholar 

  • Barnes CR (1973) Ordovician conodont biostratigraphy of the Canadian Arctic. In: Aitken JD, Glass DJ (eds) Canadian arctic geology. Geol Assoc Can/Can Soc Petrol Geol, pp 221–240

    Google Scholar 

  • Blumer M, Mullin MM, Thomas DW (1963) Pristane in zooplankton. Science 140: 974

    Article  Google Scholar 

  • Brassell SC, Wardroper AMK, Thomson ID, Maxwell JD, Eglinton G (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature (London) 280: 693–696

    Article  Google Scholar 

  • Brenchley PJ, Newall G (1984) Late Ordovician environmental changes and their effect on faunas. In: Bruton DL (ed) Aspects of the Ordovician System. Palaeontol contrib Univ Oslo 295 (Universtetsforlaget):65–79

    Google Scholar 

  • Brooks PW, Snowdon LR, Osadetz KG (1987) Families of oils in southeastern Saskatchewan. In: Carlson CG, Christopher JE (eds) Proc 5th Int Williston Basin Symp, Bismarck, ND, June 15-17, 1987. Sask Geol Soc Spec Publ 9:253–264

    Google Scholar 

  • Burns DA (1982) A transmission electron microscope comparison of modern Botryococcus braunii with some micro-fossils previously referred to that species. Rev Esp Micropaleontol 14:165–185

    Google Scholar 

  • Cole GA, Drozd RJ, Sedivy RA, Halpern HI (1987) Organic geochemistry and oil-source correlations, Paleozoic of Ohio. Am Assoc Petrol Geol Bull 71:788–809

    Google Scholar 

  • Combaz A, Peniguel G (1972) Etude palynostratigraphique de l’Ordovicien dans quelques sondages du Bassin de Canning (Australie Occidentale). Bull Cent Rech Pau SNPA 6:121–167

    Google Scholar 

  • Cookson IC (1953) Records of the occurrence of Botryococ cus braunii, Pediastrum and the Hystrichosphaerideae in Cainozoic deposits of Australia. Mem Natl Mus Vict Melbourne 18: 107–123

    Google Scholar 

  • Cramer FH, Diez de Cramer MDCR (1972) North American Silurian palynofacies and their spatial arrangement: acritarchs. Palaeontogr Abt B 138:107–180

    Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Tegelaar EW, de Leeuw JW (1988) Relationships between algal coals and resistant cell wall biopolymers of extant algae as revealed by Py-GC-MS. Fuel Process Technol 20:93–101

    Article  Google Scholar 

  • Drenne S, Largeau C, Casadevall E, Sinninghe Damsté JS, Tegelaar EW, de Leeuw JW (1990) Characterisation of Estonian kukersite by spectroscopy and pyrolysis: evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org Geochem 16:873–888

    Article  Google Scholar 

  • De Rosa M, Gambocorta A, Minale L, Bu’lock JD (1972) The formation of ω-cyclohexyl fatty acids from shikimate in an acidophilic thermophilic Bacillus. Biochem J 128:751–754

    Google Scholar 

  • De Sousa NJ, Nes WR (1968) Sterols: isolation from a blue-green alga. Science 162: 363

    Article  Google Scholar 

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature (London) 272:216–222

    Article  Google Scholar 

  • Douglas AG, Sinninghe Damsté JS, Fowler MG, Eglinton TI, de Leeuw JW (1990) Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloeocapsomorpha prisca ,a major constituent in one of four Ordovician kerogens. Geochim Cosmochim Acta 55:275–291

    Article  Google Scholar 

  • Foster CB, O’Brien GW, Watson ST (1986) Hydrocarbon source potential of the Goldwyer Formation, Barbwire Terrace, Canning Basin, Western Australia. Aust Petrol Explor Assoc J 26, 1:142–155

    Google Scholar 

  • Foster CB, Reed JD, Wicander R, Summons RE (1989a) Anatomy of an Ordovician oil-prone maceral: Gloeoca psomorpha prisca Zalessky 1917. In: Thomas CG, Strachan MG (eds) Proc Macerals ’89 Symp. CSIRO Div Coal Techn, North Ryde, NSW, 16:1–9

    Google Scholar 

  • Foster CB, Reed JD. Wicander R (1989 b) Gloeocapsomor pha prisca Zalessky, 1917: a new study part 1: taxonomy, geochemistry and paleoecology. Geobios 22:735–759

    Article  Google Scholar 

  • Foster CB, Wicander R, Reed JD (1990) Gloeocapsomorpha prisca Zalessky, 1917: a new study part II: origin of kukersite, a new interpretation. Geobios 23: 133–140

    Article  Google Scholar 

  • Fowler MG (1984) Organic geochemistry of pre-Carboniferous sedimentary organic matter. PhD Thesis, Univ Newcastle-Upon-Tyne, 218 pp

    Google Scholar 

  • Fowler ’MG, Douglas AG (1984) Distribution and structure of hydrocarbons in four organic-rich Ordovician rocks. Org Geochem 6:105–114

    Article  Google Scholar 

  • Fowler MG, Abolins P, Douglas AG (1986) Monocyclic alkanes in Ordovician organic matter. Org Geochem 10:815–823

    Article  Google Scholar 

  • Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols, likely precursors of pristane in ancient sediments and crude oils. Nature (London) 312:440–442

    Article  Google Scholar 

  • Goth K, de Leeuw JW, Puttmann W, Tegelaar EW (1988) Origin of Messel oil shale kerogen. Nature (London) 336:759–761

    Article  Google Scholar 

  • Grantham PJ, Wakefield LL (1988) Variations in the sterane carbon number distribution of marine source rock derived crude oils through geological time. Org Geochem 12:61–73

    Article  Google Scholar 

  • Hatch JR, Jacobson SR, Witzke BJ, Risatti JB, Anders DE, WatneyWL, Newell KD, Vuletich AK (1987) Possible Late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbons source rocks, mid-continent and east-central United States. Am Assoc Petrol Geol Bull 71:1342–1354

    Google Scholar 

  • Heywood WW, Sanford BV (1976) Geology of Southampton, Coats and Mansell Islands, District of Keewatin, Northwest Territories. Geol Surv Can Mem 382:35 pp

    Google Scholar 

  • Hoffmann CF, Foster CB, Powell TG, Summons RE (1987) Hydrocarbon biomarkers from Ordovician sediments and fossil alga G. prisca Zalessky 1917. Geochim Cosmochim Acta 51: 2681–2697

    Article  Google Scholar 

  • Hutton AC (1987) Petrographic classification of oil shales. Int J Coal Geol 8:203–231

    Article  Google Scholar 

  • Illich HA, Grizzle PL (1983) Comment on “Comparison of Michigan Basin crude oils” by Vogler et al. Geochim Cosmochim Acta 47: 1151–1155

    Article  Google Scholar 

  • Jaanusson V (1984) What is so special about the Ordovician? In: Bruton DL (ed) Aspects of the Ordovician-System. Palaeontol Contrib Univ Oslo 295 (Universitets-forlaget):1–3

    Google Scholar 

  • Jacobson SR, Hatch JR, Teerman SC, Askin RA (1988) Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils. Am Assoc Petrol Geol Bull 58:499–506

    Google Scholar 

  • Johns RB, Belsky T, McCarthy ED, Burlingame AL, Haug P, Schnoes HK, Richter WJ, Calvin M (1966) The organic geochemistry of ancient sediments II. Geochim Cosmochim Acta 30: 1191–1222

    Article  Google Scholar 

  • Kendall AC (1976) The Ordovician carbonate succession (Bighorn Group) of southern Saskatchewan. Saskatchewan Dep Mineral Resourc Rep 180:185p

    Google Scholar 

  • Klesment I, Nappa L (1980) Investigation of the structure of Estonian oil shale kukersite by conversion in aqueous suspension. Fuel 59: 117–122

    Article  Google Scholar 

  • Kohm JA, Louden RO (1978) Ordovician Red River of eastern Montana and western North America: relationships between lithofacies and production. In: 1979 Wil-liston Basin Symp Economic geology of the Williston Basin. Proc Montana Geol Soc 24th Annu Conf, Billings, Montana, pp 99–117

    Google Scholar 

  • Kurylowicz LE, Ozimic S, McKirdy DM, Kantsler AJ, Cook AC (1976) Reservoir and source rock potential of the Larapinta Group, Amadeus Basin, central Australia. Aust Petrol Explor Assoc J 16, 1:49–65

    Google Scholar 

  • Largeau C, Derenne S, Casadevall E, Kadouri A, Sellier N (1986) Pyrolysis of immature torbanite and of the resistant biopolymer (PRB A) isolated from the extant alga Botryococcus braunii. Org Geochem 10:1023–1032

    Article  Google Scholar 

  • Larter SR (1978) A geochemical study of kerogen and related materials. PhD Thesis, Univ Newcastle-Upon-Tyne

    Google Scholar 

  • Longman MW, Palmer SE (1987) Organic geochemistry of Mid-Continent Middle and Late Ordovician oils. Am Assoc Petrol Geol Bull 71: 938–950

    Google Scholar 

  • Macauley G (1986) Geochemistry of the Ordovician Boas oil shale, Southampton Island, Northwest Territories. Geol Surv Can Open File Rep 1285:15 pp

    Google Scholar 

  • Macauley G, Snowdon LR, Ball FD (1985) Geochemistry and geological factors governing exploitation of selected Canadian oil shale deposits. Geol Surv Can Pap 85:13–65 pp

    Google Scholar 

  • Macauley G, Fowler MG, Goodarzi F, Snowdon LR, Stasiuk LD (1990) Ordovician oil shale-source rock sediments in the central and eastern Canada mainland and eastern Arctic areas and their significance for frontier exploration. Geol Surv Can Paper 90-14:51 pp

    Google Scholar 

  • Martin RL, Winters JC, Williams JA (1963) Distribution of n-paraffins in crude oils and their implications to the origin of petroleum. Nature (London) 199: 110–113

    Article  Google Scholar 

  • Mayr U (1978) Stratigraphy and correlation of Lower Paleozoic formations, subsurface of Cornwallis, Devon, Somerset and Russell Islands, Canadian Arctic Archipelago. Geol Surv Can Bull 276, 55 pp

    Google Scholar 

  • McCracken AD, Nowlan GS (1989) Conodont paleontology and biostratigraphy of Ordovician carbonates and petroliferous carbonates on Southampton, Baffin and Akpatok Islands in the eastern Canadian Arctic. Can J Earth Sci 26: 1880–1903

    Article  Google Scholar 

  • McGregor DC, Cramer FH (1971) Palynomorphs of the Ordovician Cat Head Member, Lake Winnipeg, Manitoba. Contributions to Canadian paleontology: fossils of the Ordovician Red River Formation (Cat Head Member), Manitoba. Geol Surv Can Bull 20: 1–11

    Google Scholar 

  • McKirdy DM, Hahn JH (1982) The composition of kerogen and hydrocarbons in Precambrian rocks. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Dahlem Konf. Springer, Berlin Heidelberg New York, pp123–154

    Chapter  Google Scholar 

  • McKirdy DM, Kantsler AJ (1980) Oil geochemistry and potential source rocks of the Officer Basin, South Australia. Aust Petrol Explor Assoc J 20, 1:60–86

    Google Scholar 

  • McKirdy DM, Aldridge AK, Ypma PJM (1983) A geochemical comparison of some crude oils from pre-Ordovician carbonate rocks. In: Bjorøy M (ed) Advances in Organic Geochemistry 1981, Wiley Heyden, Chichester, pp99–107

    Google Scholar 

  • Monnier F, von der Dick H, Fowler MG, Brooks PW (1987) Simultaneous early generation of gaseous and liquid hydrocarbons from a Cambrian lean organic sourcerock. In: Abstr 13th Int Meet Org Geochem, Venezia, Sept 21-25, 1987, p 254

    Google Scholar 

  • Nelson ST, Johnson RD (1966) Geology of Hudson Bay Basin. Bull Can Petrol Geol 14: 520–578

    Google Scholar 

  • Nissenbaum A, Baedecker MG, Kaplan IR (1972) Organic geochemistry of Dead Sea sediments. Geochim Cosmochim Acta 36:709–729

    Article  Google Scholar 

  • Osadetz KG, Snowdon LR, Stasiuk LD (1989) Association of enhanced hydrocarbon generation and crustal structure in the Canadian Williston Basin. In: Current research, pt D. Geol Surv Can Pap 89-1D:35–47

    Google Scholar 

  • Oshima M, Ariga T (1975) ω-Cyclohexyl fatty acids in acidophilic thermophilic bacteria. J Biol Chem 250:6963–6968

    Google Scholar 

  • Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41: 301–333

    Article  Google Scholar 

  • Paoletti C, Pushparj B, Florezano G, Capella P, Lercker G (1976a) Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses I Total unsaponifiable and hydrocarbon fraction. Lipids 11:258–265

    Article  Google Scholar 

  • Paoletti C, Pushparj B, Florezano G, Capella P, Lercker G (1976 b) Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses II. Terpenic alcohol and sterol fractions. Lipids 11:266–271

    Article  Google Scholar 

  • Powell TG, Macqueen RW, Barker JF, Bree DG (1984) Geochemical character and origin of Ontario oils. Bull Can Petrol Geol 32:289–312

    Google Scholar 

  • ReedJD, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their sources. Org Geochem 10:347–358

    Article  Google Scholar 

  • Rubinstein I, Strausz OP (1979) Geochemistry of the thiourea adduct fraction from an Alberta petroleum. Geochim Cosmochim Acta 43:1387–1392

    Article  Google Scholar 

  • Rubinstein I, Sieskind O, Albrecht P (1975) Rearranged steranes in a shale: occurrence and simulated formation. J Chem Soc Perkin 1:1833–1836

    Article  Google Scholar 

  • RullkötterJ, Aizenshtat Z, Spiro B (1984) Biological markers in bitumens and pyrolysates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel). Geochim Cosmochim Acta 48: 151–157

    Article  Google Scholar 

  • Rullkötter J, Meyers PA, Schaefer RG, Dunham KW (1986) Oil generation in the Michigan Basin: a biological marker and stable isotope approach. Org Geochem 10:359–375

    Article  Google Scholar 

  • Saxby JD, Bennett AJR, Corcoran JF, Lambert DE, Riley KW (1986) Petroleum generation: simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin. Org Geochem 9: 69–81

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42:77–95

    Article  Google Scholar 

  • Sieskind O, Joly G, Albrecht (1979) Simulation of the geochemical transformation of sterols: superacid effect of clay minerals. Geochim. Cosmochim Acta 43: 1675–1679

    Article  Google Scholar 

  • Simoneit BRT, Burlingame AL (1973) Carboxylic acids derived from Tasmanian tasmanite by extraction and kerogen oxidations. Geochim Cosmochim Acta 37: 595–610

    Article  Google Scholar 

  • Snowdon LR (1984) A comparison of Rock-Eval pyrolysis and solvent extraction results from the Collingwood and Kettle Point oil shales, Ontario. Bull Can Petrol Geol 32:327–334

    Google Scholar 

  • Snowdon LR, Osadetz KG (1988) Geological processes interpreted from gasoline range analyses of oils from southeast Saskatchewan and Manitoba. In: Current research, pt D. Geol Surv Can Pap 88-1D:33–40

    Google Scholar 

  • Stanley SM (1988) Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. Am J Sci 288

    Google Scholar 

  • Stasiuk LD, Osadetz K (1990) The life cycle and phyletic affinity of Gloeocapsomorpha prisca Zalessky 1917 from Ordovician rocks in Canadian Williston Basin. In: Current research, pt D. Geol Surv Can Pap 90-1D, pp 123– 137

    Google Scholar 

  • Summons RE, Powell TG (1986) Chlorobiaceae in Paleozoic sea revealed by biological markers, isotopes and geology. Nature (London) 319:763–765

    Article  Google Scholar 

  • Summons RE, Powell TG (1987) Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim Cosmochim Acta 51:557–566

    Article  Google Scholar 

  • Suzuki K-I, Saito K, Kawaguchi A, Oduka S, Komagata K (1981) Occurrence of ω-cyclohexyl fatty acids in Cur tobacterium pusillum stains. J Gen Appl Microbiol 27:261–266

    Article  Google Scholar 

  • Ten Haven HL, de Leeuw JW, Rullkötter J, Sinninghe Damsté JS (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature (London) 330:641–643

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin Heidelberg New York, 699 pp

    Google Scholar 

  • Tissot B, Pelet R, Roucoche J, Combaz J (1977) Utilisation des alcanes comme fossiles géochimques indicateurs des environnements géologiques. In: Campos R, Goni J (eds) Advances in organic Geochemistry 1975. ENADIMSA, Madrid, pp 117–154

    Google Scholar 

  • Traverse A (1955) Occurrence of the oil-forming alga Bot ryococcus in lignites and other Tertiary sediments. Micropaleontology 1:343–350

    Article  Google Scholar 

  • Vitorovic D (1980) Structure elucidation of kerogen by chemical methods. In: Durand B (ed) Kerogen. Editions Technip. Paris, pp 301–338

    Google Scholar 

  • Vlierboom FW. Collini B. Zumberge JE (1986) the occurrence of petroleum in sedimentary rocks of the meteor impact crater at Lake Siljan, Sweden. Org Geochem 10:153–161

    Article  Google Scholar 

  • Vogler EA, Meyers PA, Moore WA (1981) Comparison of Michigan Basin crude oils. Geochim Cosmochim Acta 45:2287–2293

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  Google Scholar 

  • Volkman JK, Maxwell JR (1986) Acyclic isoprenoids as biological markers. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 1 -42

    Google Scholar 

  • Weaver FJ, Macko SA (1988) Source rocks of western Newfoundland. Org Geochem 13:411–421

    Article  Google Scholar 

  • Weete JD (1976) Algal and fungal waxes. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, pp 350–418

    Google Scholar 

  • Wielens JBW, von der Dick H, Fowler MG, Brooks PW, Monnier F (1990) Geochemical comparison of a Cambrian potential alginite source rock, and hydrocarbons from the Colville/Tweed Lake area, Northwest Territories, Canada. Bull Can Petrol Geol 38:236–245

    Google Scholar 

  • Wilde P, Berry WBN (1984) Destabilization of the oceanic density structure and its significance to marine “extinction” events. Palaeogeogr Paleoclimatol Palaeoecol 48:143–162

    Article  Google Scholar 

  • Williams JA (1974) Characterisation of oil types in Williston Basin. Am Assoc Petrol Geol Bull 58:1243–1252

    Google Scholar 

  • Zalessky MD (1917) On marine sapropelite of Silurian age formed by a blue-green alga. Izv Imp Akad Nauk IV Ser 1:3–18

    Google Scholar 

  • Zumberge JE (1983) Tricyclic diterpane distributions in the correlation of Paleozoic crude oils from the Williston Basin. In: Bjorøy M (ed) Advances in organic geochemistry 1981. Wiley Heyden, Chichester, pp 738–745

    Google Scholar 

  • Zumberge JE (1987) Prediction of source rock characteristics based on terpane biomarkers in crude oils: a multivariate statistical approach. Geochim Cosmochim Acta 51:1625–1637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fowler, M.G. (1992). The Influence of Gloeocapsomorpha prisca on the Organic Geochemistry of Oils and Organic-Rich Rocks of Late Ordovician Age from Canada. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics