Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 94))

Abstract

Significant quantities of woody debris are found in stream channels draining forested watersheds. For example, as much as 250–800 tons/hectare of woody debris were found in stream channels of old growth conifer forests compared to 40–130t/ha in streams draining mixed hardwood forests (Triska and Cromack 1980). Once in a stream, woody debris has a much longer residence time than leaves due to its slow rate of decomposition and its large size which resists displacement (Swanson et al. 1976). In stream systems, woody debris influences channel morphology, increases habitat diversity, affects transport of other materials by forming debris dams and serves as a carbon source, site of attachment and shelter for aquatic organisms (Fisher and Likens 1972; Anderson and Sedell 1979; Bilby and Likens 1980; Bird and Kaushik 1981; Harmon et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdullah SK, Descals E, Webster J (1981) Teleomorphs of three aquatic hyphomycetes. Trans Br Mycol Soc 77: 475–483

    Article  Google Scholar 

  • Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24: 351–377

    Article  Google Scholar 

  • Anderson NH, Sedell JR, Roberts LM, Triska FJ (1978) The role of aquatic invertebrates in processing of wood debris in coniferous forest streams. Am Midl Nat 100: 64–82

    Article  CAS  Google Scholar 

  • Archer J, Willoughby LG (1969) Wood as a growth substratum for a freshwater foam spore. Trans Br Mycol Soc 53: 484–487

    Article  Google Scholar 

  • Arnold GRW (1970) De Specie nova generis Ingoldia. Nov Syst Plant non Vasc 6:173–176

    Google Scholar 

  • Aumen NG, Bottomly PJ, Ward GM, Gregory SV (1983) Microbial decomposition of wood in streams: distribution of microflora and factors affecting [14C]lignocellulose mineralization. Appl Environ Microbiol 46: 1409–1416

    PubMed  CAS  Google Scholar 

  • Bärlocher F (1985) The role of fungi in the nutrition of stream invertebrates. Bot J Linn Soc 91: 83–94

    Article  Google Scholar 

  • Bärlocher F (1991) Intraspecific hyphal interactions among aquatic hyphomycetes. Mycologia 83: 82–88

    Article  Google Scholar 

  • Bärlocher F, Oertli JJ (1978) Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70: 964–974

    Article  Google Scholar 

  • Bärlocher F, Schweizer M (1983) Effects of leaf size and decay rate on colonization by aquatic hyphomycetes. Oikos 41: 205–210

    Article  Google Scholar 

  • Bärlocher F, Kendrick B, Michaelides J (1978) Colonization and conditioning of Pinusresinosa needles by aquatic hyphomycetes. Arch Hydrobiol 81: 462–474

    Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of prokaryotes and eukaryotes Limnol Oceanogr 31: 89–100

    Google Scholar 

  • Bilby RE, Likens GE (1980) Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113

    Article  Google Scholar 

  • Bird GA, Kaushik NK (1981) Coarse particulate organic matter in streams. In: Lock MA, Williams DD (eds) Perspectives in running water ecology. Plenum, New York, pp 41–68

    Google Scholar 

  • Browning BL (1963) The composition and chemical reactions of wood. In: Browning BL (ed) The chemistry of wood. Interscience Publ, John Wiley and Sons, New York, pp 57–102

    Google Scholar 

  • Butler SK, Suberkropp K (1986) Aquatic hyphomycetes on oak leaves: comparison of growth, degradation and palatability. Mycologia 78: 922–928

    Article  Google Scholar 

  • Charnier AC (1985) Cell-wall degrading enzymes of aquatic hyphomycetes: a review. Bot J Linn Soc 91: 67–81

    Article  Google Scholar 

  • Chamier AC, Dixon PA (1982) Pectinases in leaf degradation by aquatic hyphomycetes: the enzymes and leaf maceration. J Gen Microbiol 128: 2469–2483

    CAS  Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, New York

    Google Scholar 

  • Crane JL, Dumont KP (1975) Hyphomycetes from the West Indies and Venezuela. Can J Bot 53: 843–851

    Article  Google Scholar 

  • Danninger E, Messner K, Rohr M (1979) Untersuchungen über den biologischen Abbau organischer Naturstoffe durch aquatische Hyphomyzeten. Zentralbl Bakteriol Hyg I Abt Orig B 169: 282

    CAS  Google Scholar 

  • Descals E, Sutton BC (1976) Anavirga dendromorphaand its Phialocephala phialidic state. Trans Br Mycol Soc 67:269–274

    Article  Google Scholar 

  • Descals E, Webster J (1982) Taxonomic studies on aquatic hyphomycetes III. Some new species and a new combination. Trans Br Mycol Soc 78: 405–437

    Article  Google Scholar 

  • Descals E, Fisher PJ, Webster J (1984) The Hymenoscyphus teleomorph of Geniculospora grandis. Trans Br Mycol Soc 83: 541–546

    Article  Google Scholar 

  • Dudley T, Anderson NH (1982) A survey of invertebrates associated with wood debris in aquatic habitats. Melanderia 39: 1–21

    Google Scholar 

  • Eaton RA, Jones EBG (1971) The biodeterioration of timber in water cooling towers. II. Fungi growing on wood in different positions in water cooling towers. Mater Org 6: 81–92

    Google Scholar 

  • Findlay WPK (ed) (1985) Preservation of timber in the tropics. Dr. W Junk Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Fisher PJ, Davey RA, Webster J (1983) Degradation of lignin by aquatic and aero-aquatic hyphomycetes. Trans Br Mycol Soc 80: 166–168

    Article  CAS  Google Scholar 

  • Fisher SG, Likens GE (1972) Stream ecosystem: organic energy budget. BioScience 22: 33–35

    Article  Google Scholar 

  • Gunasekera SA, Webster J (1983) Effect of nitrate and phosphate on weight losses of pine and oak wood caused by aquatic and aero-aquatic hyphomycetes. Trans Br Mycol Soc 80: 507–514

    Article  Google Scholar 

  • Hamad SR, Webster J (1987) Anavirga dendromorpha, anamorph of Apostemidium torrenticola. Sydowia 40:60–64

    Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K JR, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Rec Adv Ecol Res 15: 133–302

    Article  Google Scholar 

  • Ingold CT (1952) Actinospora megalospora n. sp., an aquatic hyphomycete. Trans Br Mycol Soc 35:66–70

    Article  Google Scholar 

  • Iqbal SH (1971) New aquatic hyphomycetes. Trans Br Mycol Soc 56:343–352 Iqbal SH (1974) New aquatic hyphomycetes. Biologia 20: 1–10

    Google Scholar 

  • Iqbal SH, Bhatty SF (1980) New freshwater hyphomycetes from Pakistan. Trans Mycol Soc Jpn 21: 71–75

    Google Scholar 

  • Jones EBG (1972) The decay of timber in aquatic environments. Br Wood Presery Assoc Annu Cony, pp 1–18

    Google Scholar 

  • Jones EBG (1981) Observation on the ecology of lignicolous aquatic hyphomycetes. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp 731–742

    Google Scholar 

  • Jones EBG, Oliver AC (1964) Occurrence of aquatic hyphomycetes on wood submerged in fresh and brackish water. Trans Br Mycol Soc 47: 45–48

    Article  Google Scholar 

  • Jones EBG, Stewart RJ (1972) Tricladium varium, an aquatic hyphomycete on wood in water-cooling towers. Trans Br Mycol Soc 59:163–167

    Article  Google Scholar 

  • Kane D (1980) The effect of sewage effluent on the growth of micro-organisms in the marine environment. PhD Thesis, Portsmouth Polytechnic, Portsmouth, England Kirk PW (1969) Aquatic hyphomycetes on wood in an estuary. Mycologia 61: 177–181

    Google Scholar 

  • Kirk TK (1983) Degradation and conversion of lignocellulose. In: Smith JF, Berry DR,Kristansen B (eds) The filamentous fungi. Edward Arnold, London, pp 266–295

    Google Scholar 

  • Kirk TK, Cowling EB (1984) Biological decomposition of solid wood. Am Chem Soc Ser 207: 457–487

    Google Scholar 

  • Lamore BJ, Goos RD (1978) Wood-inhabiting fungi of a freshwater stream in Rhode Island. Mycologia 70: 1025–1034

    Article  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD, Eshleman KN (1983) The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia 58: 281–285

    Article  Google Scholar 

  • Nawawi A (1974) A new Campylospora. Trans Br Mycol Soc 63: 603–607

    Article  Google Scholar 

  • Nawawi A (1975) Triscelophorus acuminatus sp. nov. Trans Br Mycol Soc 64:345–348

    Article  Google Scholar 

  • Nawawi A (1976) A new genus of Hyphomycetes. Trans Br Mycol Soc 66: 344–347

    Article  Google Scholar 

  • Nawawi A, Kuthubutheen AJ (1988) Additions to Condylospora ( Hyphomycetes) from Malaysia. Mycotaxon 33: 329–338

    Google Scholar 

  • Nawawi A, Kuthubutheen AJ (1989) Quadricladium aquaticum Gen et sp. nov., an aquatic hyphomycete with tetraradiate conidia. Mycotaxon 34:489–495

    Google Scholar 

  • Nilsen HC, Larimore RW (1973) Establishment of invertebrate communities on log substrates in the Kaskaskia River, Illinois. Ecology 54: 366–374

    Article  Google Scholar 

  • Nilsson S (1964) Freshwater hyphomycetes: taxonomy, morphology and ecology. Symb Bot Ups 18: 1–130

    Google Scholar 

  • Pereira CRD, Anderson NH, Dudley T (1982) Gut content analysis of aquatic insects from wood substrates. Melanderia 39: 23–33

    Google Scholar 

  • Perrott E (1960) Ankistrocladium fuscum Gen nov., sp. nov., an aquatic hyphomycete. Trans Br Mycol Soc 43:556–558

    Article  Google Scholar 

  • Petersen RH (1960) Culicidospora,a new genus of aquatic, aleuriosporous hyphomycetes. Bull Torrey Bot Club 87:342–347

    Article  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. In: Rowell RM (ed) The chemistry of solid wood. Advances in chemistry series 207. American Chemical Society, Washington, DC, pp 57–126

    Chapter  Google Scholar 

  • Price IP, Talbot PHB (1966) An aquatic hyphomycete in a lignicolous habitat. Aust J Bot 14: 19–23

    Article  Google Scholar 

  • Pugh GFJ (1980) Strategies in fungal ecology. Trans Br Mycol Soc 75: 1–14

    Article  Google Scholar 

  • Ranzoni FV (1951) Nutrient requirements for two species of aquatic hyphomycetes. Mycologia 43: 130–141

    Article  Google Scholar 

  • Ranzoni FV (1953) The aquatic hyphomycetes of California. Farlowia 4: 353–398

    Google Scholar 

  • Ranzoni FV (1956) The perfect stage of Flagellospora penicillioides. Am J Bot 43: 13–17

    Article  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. John Wiley & Sons, New York

    Google Scholar 

  • Rayner ADM, Todd NK (1979) Population and community structure and dynamics of fungi in decaying wood. Adv Bot Res 7: 333–420

    Article  Google Scholar 

  • Révay A, Gönczöl J (1990) Longitudinal distribution and colonization patterns of woodinhabiting fungi in a mountain stream in Hungary. Nova Hedwigia 51: 505–520

    Google Scholar 

  • Sanders PF, Anderson JM (1979) Colonization of wood blocks by aquatic hyphomycetes. Trans Br Mycol Soc 73: 103–107

    Article  Google Scholar 

  • Scheffer TC, Cowling EB (1966) Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4: 147–170

    Article  CAS  Google Scholar 

  • Shearer CA (1972) Fungi of the Chesapeake Bay and its tributaries. III. The distribution of wood-inhabiting ascomycetes and fungi imperfecti of the Patuxent River. Am J Bot 59: 961–969

    Article  Google Scholar 

  • Shearer CA (1989a) Aniptodera (Halosphaeriaceae) from wood in freshwater habitats. Mycologia 81:139–146

    Article  Google Scholar 

  • Shearer CA (1989b) Pseudohalonectria (Lasiosphaeriaceae), an antagonistic genus from wood in freshwater. Can J Bot 81:139–146

    Google Scholar 

  • Shearer CA, Bartolata M (1990) Experimental determination of in situ competitive interactions among aquatic lignicolous fungi. In: Reisinger A, Bresinsky A (eds) Abstr 4th Int Mycol Congr, Regensburg, Germany. Botanical Institute, Univ Regensburg

    Google Scholar 

  • Shearer CA, Crane JL (1978) The distribution of Nais inornata, a facultative marine ascomycete. Mycotaxon 7: 443–452

    Google Scholar 

  • Shearer CA, Crane JL (1985) Aquadiscula appendiculata, a new genus and species of Discomycetes from leaves submerged in a freshwater swamp. Mycologia 77:441–446

    Google Scholar 

  • Shearer CA, Crane JL (1986) Illinois fungi. XII. Fungi and myxomycetes from wood and leaves submerged in southern Illinois swamps. Mycotaxon 25: 527–538

    Google Scholar 

  • Shearer CA, von Bodman S (1983) Patterns of occurrence of ascomycetes associated with decomposing twigs in a mid-western stream. Mycologia 75: 518–530

    Article  Google Scholar 

  • Shearer CA, Webster J (1991) Aquatic hyphomycetes in the River Teign IV. Twig colonization. Mycol Res 95: 413–420

    Article  Google Scholar 

  • Shearer CA, Zare-Maivan H (1988) In vitro hyphal interactions among wood-and leaf-inhabiting Ascomycetes and Fungi Imperfecti from freshwater habitats. Mycologia 80: 31–37

    Article  Google Scholar 

  • Sinclair RC, Morgan-Jones G (1979) Notes on hyphomycetes. XXXII. Five new aquatic species. Mycotaxon 9: 469–481

    Google Scholar 

  • Slâdeckovâ A (1963) Aquatic deuteromycetes as indicators of starch campaign pollution. Int Rev Ges Hydrobiol 48: 35–42

    Article  Google Scholar 

  • Suberkropp K, Klug MJ (1980) The maceration of deciduous leaf litter by aquatic hyphomycetes. Can J Bot 58: 1025–1031

    Article  CAS  Google Scholar 

  • Suberkropp K, Klug MJ (1981) The degradation of leaf litter by aquatic hyphomycetes. In: Wicklow DT, Carroll GC (eds) The fungal community. Marcel Dekker, New York

    Google Scholar 

  • Suberkropp K, Arsuffi TL, Anderson JP (1983) Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl Enviton Microbiol 46: 237–244

    CAS  Google Scholar 

  • Swanson FJ, Lienkeamper GW, Sedell JR (1976) History, physical effects and management implications of large organic debris in western Oregon streams. USDA For Sery Gen Tech Rep PNW-56, Washington, DC

    Google Scholar 

  • Swift MJ (1977) The ecology of wood decomposition. Sci Prog (Oxford) 64:175–199 Thornton DR (1963) The physiology and nutrition of some aquatic hyphomycetes. J Gen Microbiol 33: 23–31

    Google Scholar 

  • Triska FJ, Cromack K (1980) The role of wood debris in forests and streams. In: Waring RH (ed) Forests: fresh perspectives from ecosystem analysis. Proc 40th Biology Colloq, 1979, Oregon State University Press, Corvallis

    Google Scholar 

  • Tubaki K (1958) Studies of the Japanese hyphomycetes V. Leaf and stem group with a discussion of the classification of hyphomycetes and their perfect stages. J Hattori Bot Lab 20: 142–244

    Google Scholar 

  • Tubaki K (1966) An undescribed species of Hymenoscyphus, a perfect stage of Varicosporium. Trans Br Mycol Soc 49: 345–349

    Article  Google Scholar 

  • Webber JF, Hedger JN (1986) Comparisons of interactions between Ceratocystis ulmi and elm bark saprobes in vitro and in vivo. Trans Br Mycol Soc 86: 93–101

    Article  Google Scholar 

  • Webster J (1959) Nectria lugdunensis sp. nov., the perfect state of Heliscus lugdunensis. Trans Br Mycol Soc 42:322–327

    Article  Google Scholar 

  • Webster J, Descals E (1981) Morphology, distribution, and ecology of conidial fungi in freshwater habitats. In: Cole GC, Kendrick B (eds), Biology of conidial fungi, vol 1. Academic Press, New York

    Google Scholar 

  • Wicklow DT (1981) Interference competition and the organization of fungal communities. In: Wicklow DT, Carroll GC (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, pp 351–375

    Google Scholar 

  • Willoughby GL, Archer JF (1973) The fungal spora of a freshwater stream and its colonization on wood. Freshwater Biol 3: 219–239

    Article  Google Scholar 

  • Zare-Maivan H, Shearer CA (1988a) Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi. Mycologia 80: 365–375

    Article  CAS  Google Scholar 

  • Zare-Maivan H, Shearer CA (1988b) Wood decay activity and cellulase production by freshwater lignicolous fungi. Int Biodeterior Bull 24: 459–474

    Article  CAS  Google Scholar 

  • Zemek J, Marvanova L, Kuniak L, Kadlecikova B (1985) Hydrolytic enzymes in aquatic hyphomycetes. Folia Microbiol 30: 363–372

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shearer, C.A. (1992). The Role of Woody Debris. In: Bärlocher, F. (eds) The Ecology of Aquatic Hyphomycetes. Ecological Studies, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76855-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76855-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76857-6

  • Online ISBN: 978-3-642-76855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics