Skip to main content

Respiratory Function of the Red Blood Cell Hemoglobins of Six Animal Phyla

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Red blood cells containing, with one interesting exception, simple hemoglobins occur in seven animal phyla; six, the Phoronida, Annelida, Nemertina, Echiuroidea, Mollusca, and Echinodermata, are covered here. By red blood cells (RBCs) I refer to the nucleated cells that circulate in any body fluid, most often in an extracellular cavity that lacks small bore tubes. By simple hemoglobins (Hbs) I mean multiples of 1–12 polypeptide chains of ca. 16 kDa, loosely linked to one another if at all. The term tissue heme proteins will be restricted here to the noncirculating, O2-binding molecules found in muscles, nerves, and gills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baba K (1940) The mechanisms of absorption and excretion in a solenogaster, Epimenia verrucosa (Nierstrasz), studied by means of ingestion methods. J Dep Agric Kyusyu Imp Univ 6: 119–166

    Google Scholar 

  • Baker SM (1988) Hemoglobin function in a burrowing sea cucumber, Paracaudina chilensis. MS Thesis, Univ Oregon, Eugene

    Google Scholar 

  • Bonaventura C, Bonaventura J, Kitto B, Brunori M, Antonini E (1976) Functional consequences of ligand-linked dissociation in hemoglobin from the sea cucumber Molpadia arenicola. Biochim Biophys Acta 428: 779–786

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura J, Kitto GB (1973) Ligand-linked dissociation of some invertebrate hemoglobins. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. North-Holland, Amsterdam, pp 493–507

    Google Scholar 

  • Booth CE, Mangum CP (1978) Oxygen uptake and transport in the lamellibranch mollusc Modiolus demissus. Physiol Zool 51: 17–38

    Google Scholar 

  • Borgese TA, Harrington JP, Nagel RL (1984) Anadara ovalis hemoglobins: distinct dissociation and ligand binding characteristics. Biol Bull 167: 501–541

    Google Scholar 

  • Brown WI, Shick JM (1979) Bimodal gas exchange and the regulation of oxygen uptake in holothurians. Biol Bull 156: 272–288

    Article  Google Scholar 

  • Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E (1981a) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inequivalvis: structural and functional properties. J Mol Biol 152: 577–592

    Article  PubMed  CAS  Google Scholar 

  • Chiancone E, Ferruzzi G, Bonaventura C, Bonaventura J (1981b) Amphitrite ornata erythrocruorin. II. Molecular controls of function. Biochim Biophys Acta 670: 84–92

    PubMed  CAS  Google Scholar 

  • Coe WR (1943) Biology of the nemerteans of the Atlantic coast of North America. Trans Conn Acad Arts Sci 35: 129–328

    Google Scholar 

  • Cohen WD, Nemhauser I (1985) Marginal bands and the cytoskeleton in blood cells of marine invertebrates. In: Cohen WD (ed) Blood cells of marine invertebrates. Alan R Liss, New York, pp 3–49

    Google Scholar 

  • Collett LC, O’Gower AK (1972) Molluscan hemoglobins with unusual temperature- dependent characteristics. Comp Biochem Physiol 41A: 843–850

    Article  Google Scholar 

  • Cowles RP (1904) Origin and fate of the blood vessels and blood corpuscles of the Actinotrocha. Zool Anz 27: 598–606

    Google Scholar 

  • Dales RP (1964) The coelomocytes of the terebellid polychaete Amphitrite johnstoni. Q J Microsc Sci 105: 263–279

    Google Scholar 

  • Dales RP, Pell JS (1970) Cytological aspects of haemoglobin and chlorocruorin synthesis in polychaete annelids. Z Zellforsch Mikrosk Anat 109: 20–32

    Article  PubMed  CAS  Google Scholar 

  • Deaton LE, Mangum CP (1976) The function of hemoglobin in the arcid clam Noetia ponderosa. II. Oxygen uptake and storage. Comp Biochem Physiol 53A: 181–186

    Article  Google Scholar 

  • Ditadi ASF (1976) On the coelomic fluid of Lissomyema exilii (F. Muller, 1883), an echiuran worm. In: Rice ME, Todorovic M (eds) Proc Int Symp on the Biology of the Sipuncula and Echiura, vol II. Natl Mus Nat Hist Smithson Inst, Wash, pp 191–196

    Google Scholar 

  • Dixon PI (1975) The biology of Anadara trapezia with particular reference to its haemoglobin. Malacol Rev 9: 139

    Google Scholar 

  • Djangmah JS, Gabbott PA, Wood EJ (1978) Physico-chemical characteristics and oxygen- binding properties of the multiple haemoglobins of the West African blood clam Anadara senilis (L.). Comp Biochem Physiol 60B: 245–250

    CAS  Google Scholar 

  • Emig C (1982) The biology of Phoronida. Adv Mar Biol 19: 1–89

    Article  Google Scholar 

  • Florkin M (1960) Unity and diversity in biochemistry. Pergamon, New York

    Google Scholar 

  • Fontaine AR, Hall BD (1981) The haemocyte of the holothurian Eupenctata quinquesemita: ultrastucture and maturation. Can J Zool 59: 1884–1891

    Article  Google Scholar 

  • Fontaine AR, Lambert P (1973) The fine structure of the haemocyte of the holothurian, Cucumaria miniata (Brandt). Can J Zool 51: 323–332

    Article  Google Scholar 

  • Fox HM (1945) The oxygen affinities of some invertebrate hemoglobins. J Exp Biol 21: 161–165

    Google Scholar 

  • Freadman MA, Mangum CP (1976) The function of hemoglobin in the arcid clam Noetia ponderosa. I. Oxygenation in vitro and in vivo. Comp Biochem Physiol 53A: 173–179

    Article  Google Scholar 

  • Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve mollusc Anadara broughtoni: complete amino acid sequence of the globin chain. Biochemistry 22: 917–922

    Article  PubMed  CAS  Google Scholar 

  • Furuta H, Ohe M, Kajita AJ (1980) Ligand dependent allosteric transformation of hemoglobins from the bood clam, Anadara brougtonii. Biochim Biophys Acta 625: 318–327

    PubMed  CAS  Google Scholar 

  • Furuta H, Ohe M, Kajita A (1981) Ligand-dependent polymerization of tetrameric hemoglobin from the blood clam Anadara broughtoni. Biochim Biophys Acta 668: 448–455

    PubMed  CAS  Google Scholar 

  • Garey JF, Riggs AF (1984) Structure and function of hemoglobin from Urechis caupo. Arch Biochem Biophys 228: 320–321

    Article  PubMed  CAS  Google Scholar 

  • Garlick RL, Williams BJ, Riggs AF (1979) The hemoglobins of Phoronopsis viridis, of the primitive invertebrate phylum Phoronida: characterization and subunit structure. Arch Biochem. Biophys 194: 13–23

    CAS  Google Scholar 

  • Grinich NP, Terwilliger RC (1980) The quaternary structure of an unusual high-molecular weight intracellular hemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J 189: 1–8

    PubMed  CAS  Google Scholar 

  • Grinich NP, Terwilliger RC, Terwilliger NB (1986) Oxygen equilibria and structural characteristics of the tetrameric and polymeric intracellular hemoglobins from the bivalve mollusc Barbatia reeveana. J Comp Physiol B156: 675–682

    Google Scholar 

  • Hajduk SL, Cosgrove WB (1975) Hemoglobin in an ophiuroid, Hemipholis elongata. Am Zool 15: 808

    Google Scholar 

  • Hall RE, Terwilliger RC, Terwilliger NB (1981) Hemoglobins and myoglobin of the echiuran Urechis caupo (Fisher and MacGinitie). Comp Biochem Physiol 70B: 353–357

    CAS  Google Scholar 

  • Harrington JP, Suarez G, Borgese TA, Nagel RL (1978) Subunit interactions of Glycera dibranchiata hemoglobin. J Biol Chem 253: 6820–6825

    PubMed  CAS  Google Scholar 

  • Hayward PJ (1981) Lophophorates. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic Press, London, pp 491–509

    Google Scholar 

  • Hoffmann RJ, Mangum CP (1970) The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata. Comp Biochem Physiol 36: 211–228

    Article  PubMed  CAS  Google Scholar 

  • Hyman LH (1951) The invertebrates, vol II. McGraw-Hill, New York

    Google Scholar 

  • Hyman LH (1955) The invertebrates, vol IV. McGraw-Hill, New York

    Google Scholar 

  • Hyman LH (1959) The invertebrates, vol V. McGraw-Hill, New York

    Google Scholar 

  • Hyman LH (1967) The invertebrates, vol VI. McGraw-Hill, New York

    Google Scholar 

  • Ikeda-Saito M, Yonetani T, Chiancone E, Ascoli F, Verzili D, Antonini E (1983) Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inequivalvis. J Mol Biol 170: 1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Kim Y (1983) The variation of hemoglobin by keeping mud at arkshell hanging culture. Bull Fish Res Dev Agency 31: 69–75

    Google Scholar 

  • Kitto GB, Erwin D, West R, Bonaventura J (1976) N-terminal substitution of some sea cucumber hemoglobins. Comp Biochem Physiol 55B: 105–107

    Google Scholar 

  • Kluytmans JH, de Bont AMT, Kruitwagen ECG, Ravestein HJL, Veenhof PR (1983) Anaerobic capacities and anaerobic energy production of some Mediterranean bivalves. Comp Biochem Physiol 75B: 171–179

    CAS  Google Scholar 

  • Kruger F (1958) Beitrage zur Physiologie des Hamoglobins wirbelloser Tiere IV. Zur Atmungsphysiologie von Glycimeris nummaria (Linne) (Mollusca: Lamellibranchiata). Zool Jahrb 67: 311–322

    CAS  Google Scholar 

  • Lankester ER (1872) A contribution to the knowledge of hemoglobin. Proc R Soc Lond 21: 70–81

    Article  Google Scholar 

  • Lawrence JL (1987) A functional biology of echinoderms. John Hopkins Univ Press, Baltimore

    Google Scholar 

  • Liebman E (1946) On trephocytes and trephocytosis: a study on the role of leucocytes in nutrition and growth. Growth 10:291–330

    PubMed  CAS  Google Scholar 

  • Mangum CP (1973) Evaluation of the functional properties of invertebrate hemoglobins. Neth J Sea Res 7: 303–315

    Article  CAS  Google Scholar 

  • Mangum CP (1976) Primitive respiratory adaptations. In: Newell RC (ed) Adaptation to environment. Butterworths, London, pp 191–278

    Google Scholar 

  • Mangum CP (1977) The annelid hemoglobins: a dichotomy in structure and function. In: Reish DJ, Fauchald K (eds) Essays in memory of Dr. Olga Hartman. Allan Hancock Found, Spec Publ, Univ S Calif, Los Angeles, pp 407–428

    Google Scholar 

  • Mangum CP (1980) Distribution of respiratory pigments and the role of anaerobic metabolism in the lamellibranch molluscs. In: Gilles R (ed) Animals and environmental fitness. Pergamon, Oxford, pp 171–184

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in the invertebrates. Am J Physiol 248: R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP, Mauro NA (1985) Metabolism of invertebrate red blood cells: a vacuum in our knowledge. In: Gilles R (ed) Circulation, respiration and metabolism. Springer, Berlin Heidelberg, New York, pp 277–280

    Google Scholar 

  • Mangum CP, Miller KI, Scott JL, Van Holde KE, Morse MP (1987) Bivalve hemocyanin: structural, functional, and phylogenetic relationships. Biol Bull 173: 205–221

    Article  CAS  Google Scholar 

  • Mangum CP, Woodin BL, Bonaventura C, Sullivan B, Bonaventura J (1975) The role of coelomic and vascular hemoglobins in the annelid family Terebellidae. Comp Biochem Physiol 51A: 281–294

    Article  Google Scholar 

  • Mangum CP, Terwilliger RC, Terwilliger NB (1983) Oxygen binding of intact coelomic cells and extracted hemoglobin of the echiuran Urechis caupo. Comp Biochem Physiol 76A: 253–257

    Article  CAS  Google Scholar 

  • Mangum CP, Colacino JM, Vandergon TL (1989a) O2 binding by single red blood cells of the annelid bloodworm Glycera dibranchiata. J Exp Zool 249: 166–169

    Article  Google Scholar 

  • Mangum CP, Colacino JM, Grassle JP (1989b) O2 binding by RBCs of 10 cryptic species of capitellid polychaetes. Am Zool 29: 20A

    Google Scholar 

  • Manwell C (1959) Oxygen equilibrium of Cucumaria miniata hemoglobin and the absence of the Bohr effect. J Cell Comp Physiol 53: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Manwell C (1960) Histological specificity of respiratory pigments. I. Comparisons of the coelom and muscle hemoglobins of the polychaete worm Travisia pupa and the echiuroid worm Arhynchite pugettensis. Comp Biochem Physiol 1: 267–276

    Article  CAS  Google Scholar 

  • Manwell C (1963) The chemistry and biology of hemoglobin in some marine clams. I. Distribution of the pigment and properties of the oxygen equilibrium. Comp Biochem Physiol 8: 209–218

    Article  CAS  Google Scholar 

  • Manwell C (1966) Sea cucumber sibling species: polypeptide chain types and oxygen equilibrium of hemoglobin. Science 152: 1393–1395

    Article  PubMed  CAS  Google Scholar 

  • Manwell C, Baker CMA (1988) Unusual pattern of haemoglobin tissue specificity in the “red maggot” worm Hyboscolex longiseta (Polychaeta, Scalibregmidae). Comp Biochem Physiol 89B: 441–453

    CAS  Google Scholar 

  • Mauro NA, Isaacks RE (1987) Metabolic and functional characteristics of erythrocytes from Glycera and Noetia. Comp Biochem Physiol 88A: 397–404

    Article  CAS  Google Scholar 

  • Nicol PI, O’Gower AK (1967) Haemoglobin variation in Anadara trapezia. Nature (London) 216: 684

    Article  Google Scholar 

  • O’Gower AK, Nicol PI (1968) A latitudinal cline of haemoglobin in a bivalve mollusc. Heredity 23: 485–491

    Article  Google Scholar 

  • Pals G, Pauptit E (1979) Oxygen binding properties of the coelomic hemoglobin of the polychaete Heteromastus filiformis related with some environmental factors. Neth J Sea Res 13: 581–592

    Article  CAS  Google Scholar 

  • Pierce SK, Maugel TK (1985) A comparison of the water-regulating responses of bivalve and polychaete red cells to osmotic stress. In: Cohen WD, Nemhauser I (eds) Blood cells of marine invertebrates. Alan R Liss, New York pp 167–189

    Google Scholar 

  • Powell MA, Arp AJ (1989) Hydrogen sulfide oxidation by abundant nonhemoglobin heme compounds in marine invertebrates from sulfide-rich habitats. J Exp Zool 249: 121–132

    Article  CAS  Google Scholar 

  • Pritchard A, White FN (1981) Metabolism and oxygen transport in the innkeeper Urechis caupo. Physiol Zool 54: 44–54

    Google Scholar 

  • Prosser CL, Judson CL (1952) Pharmacology of the hemal vessels of Stichopus californicus. Biol Bull 102: 249–251

    Article  Google Scholar 

  • Read KRH (1966) Molluscan hemoglobins and myoglobin. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca, vol II. Academic Press, New York pp 209–232

    Google Scholar 

  • Redfield AC, Florkin M (1931) The respiratory function of the blood of Urechis caupo. Biol Bull 61: 185–210

    Article  CAS  Google Scholar 

  • Roberts MS, Terwilliger RC, Terwilliger NB (1984) Comparison of sea cucumber hemoglobin structures. Comp Biochem Physiol 77B: 237–243

    CAS  Google Scholar 

  • Runnegar B (1984) Derivation of the globins from type b cytochromes. J Mol Evol 21: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Ruppert E, Fox RS (1988) Seashore animals of the southeast. Univ South Carolina Press, Columbia

    Google Scholar 

  • San George R, Nagel RL (1985) Dimeric hemoglobins from the arcid blood clam, Noetia ponderosa. J Biol Chem 260: 4331–4337

    Google Scholar 

  • Sasakawa S, Walter H (1971) Blood clam (Anadara inflata) red cells. Partition in aqueous two-polymer system. Biochim Biophys Acta 244: 452–460

    Article  PubMed  CAS  Google Scholar 

  • Scholnick DA, Mangum CP (1991) Sensitivity of hemoglobins to intracellular effectors: primitive and derived features. J Exp Zool 259: 32–42

    Article  CAS  Google Scholar 

  • Sean KE, Boilly B (1980) Aspects ultrastructuraux et cytochimiques des hématies nuclées de deux annélides polychètes Notomastus latericeus Sars et Glycera convoluta Keferstein. Can J Zool 58: 589–597

    Article  Google Scholar 

  • Shafie SM, Vinogradov SN, Larson L, McCormick JJ (1976) RNA and protein synthesis in the nucleated erythrocytes of Glycera dibranchiata. Comp Biochem Physiol 53A: 85–88

    Google Scholar 

  • Steinmeier RC, Parkhurst L (1979) Oxygen and carbon monoxide equilibria and the kinetics of oxygen binding by the cooperative dimeric hemoglobin of Thyonella gemmata. Biochem 18: 4645–4656

    Article  CAS  Google Scholar 

  • Svedberg T, Erikssen-Quensel I-B (1934) The molecular weight of erythrocruorin II. J Am Chem Soc 56: 1700–1706

    Article  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1985) Intracellular respiratory proteins of Sipuncula, Echiura, and Annelida. In: Cohen WD, Nemhauser I (eds) Blood cells of marine invertebrates. Alan R Liss, New York, pp 193–225

    Google Scholar 

  • Terwilliger RC (1974) Oxygen equilibria of the vascular and coelomic hemoglobins of the terebellid polychaete, Pista pacifica. Evidence for an oxygen transfer system. Comp Biochem Physiol 48A: 745–755

    Article  Google Scholar 

  • Terwilliger RC (1975) Oxygen equilibrium and subunit aggregation of a holothurian hemoglobin. Biochem Biophys Acta 386: 62–68

    PubMed  CAS  Google Scholar 

  • Terwilliger RC, Garlick RL (1978) Hemoglobins of Glycera robusta: oxygen equilibrium properties of coelomic cell hemoglobin and body wall myoglobin. Comp Biochem Physiol 59A: 359–362

    Article  CAS  Google Scholar 

  • Terwilliger RC, Read KRH (1970) The hemoglobins of the holothurian echinoderms Cucumaria miniata Brandt, Cucumaria piperata Stimpson and Molpadia intermedia Ludwig. Comp Biochem Physiol 36: 339–351

    Article  CAS  Google Scholar 

  • Terwilliger RC, Read KH (1972) The hemoglobin of the holothurian echinoderm, Molpadia oolitica. Comp Biochem Physiol 42B: 665–672

    Google Scholar 

  • Terwilliger RC, Terwilliger NB (1985) Molluscan hemoglobins. Comp Biochem Physiol 81B: 255–261

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB (1988) Structure and function of holothurian hemoglobins. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 589–595

    Google Scholar 

  • Terwilliger RC, Garlick RL, Terwilliger NB (1976) Hemoglobins of Glycera robusta: structures of coelomic cell hemoglobin and body wall myoglobin. Comp Biochem Physiol 54B: 149–153

    Google Scholar 

  • Terwilliger RC, Garlick RL, Terwilliger NB (1980) Characterization of the hemoglobins and myoglobin of Travisia foetida. Comp Biochem Physiol 66B: 261–266

    CAS  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Arp A (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science 219: 981–982

    Article  PubMed  CAS  Google Scholar 

  • Vandergon TL, Colacino JM (1989) Characterization of hemoglobin from Phoronis architecta. Comp Biochem Physiol 94B: 31–39

    CAS  Google Scholar 

  • Vernet G (1979) Fine structure of the nemertean worm Lineus lacteus red blood corpuscles. Cytobios 24: 43–46

    PubMed  CAS  Google Scholar 

  • Vernet G, Gontcharoff M (1980) Etude de la maturation de la lignée des globules rouges du sang du nemertean Lineus lacteus Montagu (heteronémerte). C R Acad Sci Paris. 290: 473–476

    Google Scholar 

  • Vinson CR, Bonaventura J (1987) Structure and oxygen equilibrium of the three coelomic cell hemoglobins of the echiuran worm Thalassema mellita (Conn). Comp Biochem Physiol 87B: 361–366

    CAS  Google Scholar 

  • Volbeda A, Hol WGJ (1989) Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins. J Mol Biol 206: 531–546

    Article  PubMed  CAS  Google Scholar 

  • Weber RE (1973) Functional and molecular properties of corpuscular haemoglobin from the bloodworm Glycera gigantea. Neth J Sea Res 7: 316–327

    Article  CAS  Google Scholar 

  • Weber RE (1978) Respiratory pigments. In: Mill PJ (ed) Physiology of annelids. Academic Press, London, pp 369–446

    Google Scholar 

  • Weber RE (1980) Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. Am Zool 20: 79–101

    CAS  Google Scholar 

  • Weber RE, Heidemann W (1977) The coelomic haemoglobin from the bloodworm Glycera rouxii. Molecular and oxygenation properties. Comp Biochem Physiol 57A: 151–155

    Article  Google Scholar 

  • Weber RE, Sullivan B, Bonaventura J, Bonaventura C (1977) The haemoglobin systems of the bloodworms Glycera dibranchiata and G. americana. Oxygen binding properties of haemolysates and component haemoglobins. Comp Biochem Physiol 58B: 183–187

    Google Scholar 

  • Wells RMG, Dales RP (1975) Haemoglobin function in Terebella lapidaria L., an intertidal terebellid polychaete. J Mar Biol Assoc UK 55: 211–220

    Article  CAS  Google Scholar 

  • Wells RMG, Warren LM (1975) The function of the cellular haemoglobins in Capitella capitata (Fabricius) and Notomastus latericeus Sars (Capitellidae: Polychaeta). Comp Biochem Physiol 51 A: 737–740

    Article  Google Scholar 

  • Yang M-C, Parkhurst LJ (1973) Kinetics of ligand-binding in a cooperative dimeric hemoglobin. Biophys J 13: 29a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mangum, C.P. (1992). Respiratory Function of the Red Blood Cell Hemoglobins of Six Animal Phyla. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics