Skip to main content

Numerical Application of the Geometric Collective Model

  • Chapter
Computational Nuclear Physics 1

Abstract

The generalized collective model (GCM) is a phenomenological model for the description of the low-energy (< 3 MeV) collective properties of even—even nuclei; i.e., nuclei with even charge and neutron number. The physical picture behind the model is that these nuclei behave like incompressible liquid drops, especially for higher mass numbers. Thus, the model neglects single particle properties and determines the physical properties of the nucleus by its shape. From this point of view it is clear that the excitations of the nucleus within this model are vibrations and rotations. The theoretical problem is the classification of the excited states by quantum numbers. This is possible by means of group-theoretical considerations. For an extended discussion, we refer to Refs. [6.1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.M. Eisenberg and W. Greiner, Nuclear Theory Vol 1, Nuclear Models 3rd edition ( North-Holland, Amsterdam, 1987 )

    Google Scholar 

  2. P.O. Hess, Diploma Thesis, J.W. Goethe-Universität, Frankfurt/Main, Germany, 1978

    Google Scholar 

  3. P.O. Hess, PhD Thesis, J.W. Goethe-Universität, Frankfurt/Main, Germany 1980.

    Google Scholar 

  4. P.O. Hess, M. Seiwert, J. Maruhn, and W. Greiner Z. Physik A296 (1980) 147

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Chacon and M. Moshinsky, J. Math. Phys., 17 No. 5 (1976) 668

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Chacon and M. Moshinsky J. Math. Phys., 18 No. 5 (1977) 870

    Article  ADS  Google Scholar 

  7. A. Bohr Kgl. Danske Videnskab Selskab Mat.-Fys. Medd. 26, 14 (1952)

    MathSciNet  Google Scholar 

  8. G. Gneuss and W. Greiner, Nucl. Phys. A171 (1971) 449

    Article  Google Scholar 

  9. D.A. Varshaiovich and A.N. Moskalev, V.K. Khersonskii Quantum Theory of Angular Momentum ( World Scientific, Singapore 1988 )

    Book  Google Scholar 

  10. P.O. Löwdin, Phys. Rev. 139 No. 2A (1965)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Troltenier, D., Maruhn, J.A., Hess, P.O. (1991). Numerical Application of the Geometric Collective Model. In: Langanke, K., Maruhn, J.A., Koonin, S.E. (eds) Computational Nuclear Physics 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76356-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76356-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76358-8

  • Online ISBN: 978-3-642-76356-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics