Skip to main content

Influence of Drugs on Smell Function

  • Chapter
The Human Sense of Smell

Abstract

Until recently, a book on olfaction would have been unlikely to dedicate a Chapter exclusively to neurochemistry or pharmacology. Over the past decade, however, several seemingly disparate trends have conspired to end this neglect. First, neurochemists have localized a rieh variety of neuroactive substances in specific types of olfactory neurons (Halász and Shepherd 1983, Macrides and Davis 1983). The apparent chemical specificity of different cell types, particularly within the olfactory bulb and primary olfactory cortex, suggest that the olfactory system is functionally organized at a molecular or neurochemical level. Second, there has been significant progress towards understanding molecular aspects of olfactory transduction. Recent evidence suggests that there may be common molecular events involving G-proteins and cyclic nucleotide-gated ion channels that lead to neuronal depolarization following odorant activation of membrane-bound protein receptors (Lancet 1986, Snyder et al. 1988). Third, there has been a large increase in clinical olfactory research in humans, demonstrating a variety of drug effects on olfactory perception and describing olfactory deficits in a number of disease states associated with altered neurochemical activity. And fourth, there is increasing interest among physiological psychologists in the neurobiology and psychopharmacology of olfactory learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886

    PubMed  CAS  Google Scholar 

  • Bloom FE, Costa E, Salmoiraghi GC (1964) Analysis of individual rabbit olfactory bulb neuron responses to the microelectrophoresis of acetylcholine, norepinephrine and Serotonin synergists and antagonists. J Pharmacol Exp Ther 146: 16–23

    PubMed  CAS  Google Scholar 

  • Bogan N, Brecha N, Gall C, Karten, HJ (1982) Distribution of enkephalin-like immune-reactivity in the rat main olfactory bulb. Neurosci 7: 895–906

    Article  CAS  Google Scholar 

  • Burd GD, Davis BJ, Macrides F (1982) Ultrastructural identification of substance P immunoreactive neurons in the main olfactory bulb of the hamster. Neurosci 7: 2697–2704

    Article  CAS  Google Scholar 

  • Bouvet JF, Delaleu JC, Holley A (1988) The activity of olfactory receptor cells is affected by acetylcholine and substance P. Neurosci Res 5: 214–223

    Article  PubMed  CAS  Google Scholar 

  • Braitman DJ (1986) Desensitization to glutamate and aspartate in rat olfactory (prepyriform) cortex slice. Brain Res 364: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Brennels AB (1974) Spontaneous and neurally evoked release of labelled noreadrenaline from rabbit olfactory bulbs in vivo. J Physiol 240: 279–293

    Google Scholar 

  • Chase TN, Kopin IJ (1968) Stimulus-induced release of substances from olfactory bulb using the push-pull cannula. Nature 217: 466–467

    Article  PubMed  CAS  Google Scholar 

  • Chuah MI, Hui BS (1986) Effect of amitriptyline on laminar differentiation of neonatal rat olfactory bulb. Neurosci Lett 70: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1982) The biochemical basis of neuropharmacology, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Davis BJ, Burd GD, Macrides F (1982) Localization of methionine-enkephalin, substance P and somatostatin immunoreactivities in the main olfactory bulb of the hamster. J Comp Neurol 204: 377–383

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ, Macrides F (1983) The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: An autoradiographic study. J Comp Neurol 203: 475–493

    Google Scholar 

  • Deems DA, Doty RL, Settle RG, Snow JB Jr (1988) Chemosensory dysfunction: Analysis of 750 patients from the University of Pennsylvania Smell and Taste Center. Chem Sens 13: 683

    Google Scholar 

  • Delong RE, Getchell TV (1987) Nasal respiratory function - vasomotor and secretory regulation. Chem Sens 12: 3–36

    Article  CAS  Google Scholar 

  • Dockray GJ (1983) Cholecystokinin. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. John Wiley and Sons, New York, p 851

    Google Scholar 

  • Doty RL, Deems D, Stellar S (1988a) Olfactory dysfunction in Parkinson’s disease: A general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38: 1237–1234

    Google Scholar 

  • Doty RL, Ferguson-Segall M (1987) Odor detection Performance of rats to ethyl acetate following d-amphetamine treatment. Psychopharmacol 93: 87–93

    Article  CAS  Google Scholar 

  • Doty RL, Ferguson-Segall M, Lucki I, Kreider M (1988b) Effects of intrabulbar injection of 6-hydroxydopamine on ethyl acetate odor detection in castrate and non-castrate male rats. Brain Res 444: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Frye RE (1989) Nasal obstruction and chemosensation. Otolaryngol Clin North Am 22: 381–384

    Google Scholar 

  • Doty RL, Kreiss D, Frye RE (in press) Odor intensity: Correlation with odorant-sensitive adenylate cyclase activity in cilia from frog olfactory receptor cells. Brain Res

    Google Scholar 

  • Doty RL, Reyes P, Gregor T (1987) Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Res Bull 18: 597–600

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Riklan M, Deems DA, Reynolds C, Stellar S (1989) The olfactory and cognitive deficits of Parkinson’s disease: Evidence for independence. Ann Neurol 25: 166–171

    Google Scholar 

  • Doty RL, Risser J (1989) Influence of the D-2 dopamine receptor agonist quinpirole on rat odor detection performance before and after administration of spiperone. Psychopharmacol 98: 310–315

    Article  CAS  Google Scholar 

  • Doty RL, Shaman P, Applebaum SL, Giberson R, Sikorsky L, Rosenberg L (1984) Smell identification ability: Changes with age. Science 226: 1441–1443

    Google Scholar 

  • Edwards DA, Mather RA, Shirley SG, Dodd GH (1987) Evidence for an olfactory receptor which responds to nicotine as an odorant. Experientia 43: 868–873

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex. J Comp Neurol 180: 553–544

    Google Scholar 

  • Farbman AI, Gonzales F, Chuah MI (1988) The effect of amitriptyline on growth of olfactory and cerebral neurons in vitro. Brain Res 457: 281–286

    Article  PubMed  CAS  Google Scholar 

  • Firestein S, Werblin F (1989) Odor-induced membrane currents in vertebrate olfactory receptor neurons. Science 244: 79–81

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Mullen JMH, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO (1985) N-Acetylaspartylglutmate: Possible role as the neurotransmitter of the lateral olfactory tract. Proc Naü Acad Sei USA 82: 3897–3900

    Google Scholar 

  • Foote SL, Morrison JH (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10: 67–95

    Article  PubMed  CAS  Google Scholar 

  • Gall CM, Hendry SHC, Seroogy KB, Jones EG, Haycock JW (1987) Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J Comp Neurol 266: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Gervais R (1987) Local GABAergic modulation of noradrenaline release in the rat olfactory bulb measured on superfused slices. Brain Res 400: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Gervais R, Pager J (1979) Combined modulating effects of the general arousal and the specific hunger arousal on the olfactory bulb responses in the rat. EEG Clin Neurophysiol 16: 87–94

    Article  Google Scholar 

  • Gervais R, Pager J (1983) Olfactory bulb excitability selectively modified in behaving rats after local 6-hydroxydopamine treatment. Behav Brain Res 9: 165–179

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RC (1986) Speculations on receptor cells as analyzers and Alters. Experientia 42: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Getchell TV (1986) Functional properties of vertebrate olfactory receptor neurons. Physiol Rev 68: 772–818

    Google Scholar 

  • Goodspeed RB, Catalanotto FA, Gent JR, Cain WS, Bartoshuk LM, Leonard G, Donaldson JO (1986) Clinical characteristics of patients with taste and smell disorders. In: Meiselman HL, Rivlin RS (eds) Clinical measurement of taste and smell. MacMillan Publishing Company, New York, p 451

    Google Scholar 

  • Gray CM, Freeman WJ, Skinner JE (1986) Chemical dependencies of learning in the rabbit olfactory bulb: Acquisition of the transient spatial pattern change depends on norepinephrine. Behav Neurosci 100: 585–596

    Google Scholar 

  • Graziadei PPC (1973) Cell dynamics in the olfactory mucosa. Cell Tissue Res 5: 113–131

    Article  CAS  Google Scholar 

  • Halász N, Nowycky MC, Shepherd GM, Hokfelt T (1985) Catecholaminergic contributions to the neuronal machinery of the olfactory bulb: autoradiographic, immunohistochemical and evoked field potential studies. Chem Sens 10: 203–218

    Article  Google Scholar 

  • Halász N, Shepherd GM (1983) Neurochemistry of the vertebrate olfactory bulb. Neurosci 10: 579–619

    Article  Google Scholar 

  • Hori N, Auker CR, Braitman DJ, Carpenter DO (1981) Lateral olfactory tract transmitter: Glutamate, aspartate or neither? Cell Mol Neurobiol 1: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Nicoll RA (1982) Noradrenergic modulation of dendrodendritic inhibition of the olfactory bulb. Nature 297: 227–228

    Article  PubMed  CAS  Google Scholar 

  • Kaba H, Keverne EB (1988) The effect of microinfusions of drugs into the accessory olfactory bulb on the olfactory block to pregnancy. Neurosci 25: 1007–1111

    Article  CAS  Google Scholar 

  • Krey LC, Silverman AJ (1983) Luteinizng hormone releasing hormone. In: Kreiger DT, Brownstein MJ, Martin JB (eds) Brain peptides. John Wiley and Sons, New York, p 687

    Google Scholar 

  • Kreider MS, Knight P, Winokur A, Kreiger N (1982) TRH concentration in rat olfactory bulb is undiminished by deafferentation. Brain Res 241: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Lancet D (1986) Vertebrate olfactory reception. Annu Rev Neurosci 9: 329–355

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Wright HN, Mozell MM, Youngentob SL, Hornung DE, Richman RA, Sheehe PR (1988) Clinical categorization of olfactory loss. Chem Sens 13: 708

    Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine systems in the rat brains as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412, 1–48

    PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine- and norepinephrine-containing neuron systems: Their anatomy in the rat brain. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, p 229

    Google Scholar 

  • Lincoln J, Coopersmith R, Harris EW, Cotman CW, Leon M (1988) NMDA receptor activation and early olfactory learning. Brain Res. 467: 309–312

    PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224: 1056–1063

    Article  Google Scholar 

  • Macrides F (1976) Olfactory influences on neuroendocrine function in mammals. In: Doty RL (ed) Mammalian olfaction, reproductive processes and behavior. Academic Press, New York, p 29

    Google Scholar 

  • Macrides F, Davis BJ (1983) The olfactory bulb. In: Emson, PC (ed) Chemical neuroanatomy. Raven Press, New York, p 391

    Google Scholar 

  • Mair RG, Capra C, McEntee WJ, Engen T (1980) Odor discrimination and memory in Korsakoff’s psychosis. J. Exp Psychol: Human Percept Perform 6: 445–458

    Google Scholar 

  • Mair RG, Doty RL, Kelly KM, Wilson CS, Langlais PJ, McEntee WJ, Vollmecke TA (1986) Multimodal sensory discrimination deficits in Korsakoff’s psychosis. Neuropsychologia 24: 831–839

    Article  PubMed  CAS  Google Scholar 

  • Mair RG, Slade C, Langlais PJ (1987) Monoaminergic activity in olfactory bulb and cerebellum during olfactory and motor learning tasks. Chem Sens 12: 667

    Google Scholar 

  • Mancia M, von Baumgarten R, Green JD (1962) Response patterns of olfactory bulb neurons. Arch Ital Biol 100: 449–462

    Google Scholar 

  • Marasco E, Cornwell-Jones C, Sobrian SK (1979) 6-Hydroxydopamine reduces preference for conspecific but not other familiar odors in rat pups. Physiol Biochem Behav 10: 319–323

    Article  CAS  Google Scholar 

  • Margolis FL (1981) Neurotransmitter biochemistry of the mammalian olfactory bulb. In: Cagan RH, Hare MR (eds) Biochemistry of taste and olfaction. Academic Press, New York, p 369

    Google Scholar 

  • McLennan H (1971) The pharmacology of inhibition of mitral cells in the olfactory bulb. Brain Res 29: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Molina V, Ciesielski L, Gobaille S, Mandel P (1986) Effects of the potentiation of the GABAergic neurotransmission in the olfactory bulbs on mouse-killing behavior. Pharmacol Biochem Behav 24: 657–664

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1: 129–170

    Google Scholar 

  • Moss RL, Dudley C (1984) The challenge of studying the behavioral effects of neuropeptides. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum Press, New York, p 397

    Google Scholar 

  • Moulton DG, Celebi G, Fink RP (1970) Olfaction in mammals - two aspects: proliferation of cells in the olfactory epithelium and sensitivity to odours. In: Wolstenholme G, Knight J (eds) Taste and smell in vertebrates. JA Churchill, London, p 227

    Google Scholar 

  • Nickell WT, Shipley MT (1988) Neurophysiology of magnocellular forebrain inputs to the olfactory bulb in the rat: Frequency potentiation of field potentials and inhibition of output neurons. J Neurosci 8: 4492–4502

    Google Scholar 

  • Nicoll RA (1971) Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb. Brain Res 35: 137–149

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Halász N, Shepherd GM (1983) Evoked field potential analysis of dopaminergic mechanisms in the isolated turtle olfactory bulb. Neurosci 8: 717–722

    Article  CAS  Google Scholar 

  • Nowycky MC, Mori K, Shepherd GM (1981a) GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. J Neurophysiol 46: 639–648

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Mori K, Shepherd GM (1981b) Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. J Neurophysiol 47: 649–658

    Google Scholar 

  • Olpe HR, Heid J, Bittiger H, Steinmann MW (1987) Substance P depresses neuronal activity in the rat olfactory bulb in vitro and in vivo: Possible mediation via gamma-aminobutyric acid release. Brain Res 412: 269–274

    Google Scholar 

  • Phillips HS, Ho BT, Linner JG (1982) Ultrastructural localization of LH-RH-immuno-reactive synapses in the hamster accessory olfactory bulb. Brain Res 246: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Pissonnier D, Thiery JC, Fabre-Nys C, Poindron R, Keverne EB (1985) The importance of olfactory bulb noradrenaline for maternal recognition in sheep. Physiol Behav 35: 361–363

    Article  PubMed  CAS  Google Scholar 

  • Price DL (1986) New perspectives on Alzheimer’s disease. Annu Rev Neurosci 9: 489–512

    Article  PubMed  CAS  Google Scholar 

  • Reyes PF, Golden GT, Fariello RG, Fagel L, Zalewska M (1985) Olfactory pathways in Alzheimers’s disease: Neuropathological studies. Soc Neurosci Abstr 11: Abstr 54. 10

    Google Scholar 

  • Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res 126: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1987) Psychopharmacological studies of arousal and attention. In: Stahl SM, Iversen SD, Goodman EC (eds) Cognitive neurochemistry. Oxford University Press, Oxford, p 135

    Google Scholar 

  • Rosser AE, Keverne EB (1985) The importanee of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block. Neurosci 15: 1141–1147

    Article  CAS  Google Scholar 

  • Salmoiraghi GC, Bloom FE, Costa E (1964) Adrenergic mechanisms in rabbit olfactory bulb. Am J Physiol 207: 1417–1424

    PubMed  CAS  Google Scholar 

  • Schiffman SS (1983) Taste and smell in disease. New Engl J Med 308: 1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Schneider BS, Freidman JM, Hirsch J (1983) Feeding behavior. In: Kreiger DT, Brownstein MJ, Martin JB (eds) Brain peptides. John Wiley and Sons, New York, p 251

    Google Scholar 

  • Scott JW (1986) The olfactory bulb and central pathways. Experientia 42: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Sharif NA (1988) Chemical and surgical lesion of rat olfactory bulb: Changes in thyrotropin-releasing hormone and other systems. J Neurochem 50: 388–394

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM (1972) Synaptic Organization of the mammalian olfactory bulb. Physiol Rev 52: 864–917

    PubMed  CAS  Google Scholar 

  • Shepherd GM (1979) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Shipley MT, Adamek GD (1984) The connections of the mouse olfactory bulb: A study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12: 669–688

    Google Scholar 

  • Shipley MT, Halloran FJ, de la Torre J (1985) Surprisingly rieh projection from locus coeruleus to the olfactory bulb in the rat. Brain Res 329: 294–299

    CAS  Google Scholar 

  • Shirley SG, Polak EH, Mather RA, Dodd GH (1987) The effect of concanavalin A on the rat electro-olfactogram. Differential inhibition of odorant response. Biochem J 245: 175–184

    Google Scholar 

  • Shivers BD, Harland RE, Pfaff DW (1983) Reproduction: The central nervous system role of luteinizing hormone releasing hormone. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. John Wiley and Sons, New York, p 389

    Google Scholar 

  • Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KS (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213: 1036–1037

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Sklar PB, Pevsner J (1988) Molecular mechanisms of olfaction. J Biol Chem 263: 13971–13974

    PubMed  CAS  Google Scholar 

  • Staubli U, Baudry M, Lynch G (1985) Olfactory discrimination learning is blocked by leupeptin, a thiol protease inhibitor. Brain Res 337: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1983) The raphe nuclei of the rat brainstem: A cytoarchitectonic and immunohistochemical study. In: Emson P C (ed) Chemical neuroanatomy. Raven Press, New York, p 131

    Google Scholar 

  • von Baumgarten R, Bloom FE, Oliver AP, Salmoiraghi GC (1963) Response of individual olfactory nerve cells to microelectrophorectically administered chemical substances. Pflugers Arch 227: 125–140

    Google Scholar 

  • Yamamoto C, Iwama K (1961) Arousal reaction of the olfactory bulb. Jpn J Physiol 11: 335–345

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mair, R.G., Harrison, L.M. (1991). Influence of Drugs on Smell Function. In: Laing, D.G., Doty, R.L., Breipohl, W. (eds) The Human Sense of Smell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76223-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76223-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76225-3

  • Online ISBN: 978-3-642-76223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics