Skip to main content

The Evolution of Epiphytism

  • Chapter
Vascular Plants as Epiphytes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 76))

Abstract

The evolution of epiphytism in the broadest sense and its emergence in specific taxa have received considerable attention, beginning with Schimper’s (1888) classic and insightful Die epiphytische Vegetation A merikas. Agreement remains elusive, however (e.g., Pittendrigh 1948; Benzing et al. 1985; Lüttge 1985), ancestral habitats were supposedly dark and moist or exposed and dry, depending on whether life on the forest floor or under desert-like conditions predated habitation of tree crowns. In the first case, occupancy occurred progressively up through the canopy; in the second, drier, better-illuminated sites are thought to have been necessary to accommodate transition from soil to aerial anchorage. Actually, both pathways were almost certainly followed by different lineages on separate occasions. These routes and the structures and mechanisms responsible for them are the subject of the following treatment. Also considered is the systematic occurrence of epiphytes and the ways the more prominent groups utilize tree crown habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alpert P, Oechel WC (1985) Carbon balance limits the microdistribution of Grimmia laeviqata, a desiccation-tolerant plant. Ecology 66:660–669

    Article  Google Scholar 

  • Benzing DH (1978) The life history profile of Tillandsia circinnata (Bromeliaceae) and the rarity of extreme epiphytism among the angiosperms. Selbyana 2:325–337

    Google Scholar 

  • Benzing DH (1986) The vegetative basis of vascular epiphytism. Selbyana 9:23–43

    Google Scholar 

  • Benzing DH, Atwood JT (1984) Orchidaceae:ancestral habitats and current status in forest canopies. Syst Bot 9:155–165

    Article  Google Scholar 

  • Benzing DH, Friedman WE (1981) Mycotrophy:its occurrence and possible significance among epiphytic Orchidaceae. Selbyana 5:243–247

    Google Scholar 

  • Benzing DH, Ott DW (1981) Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae:its origin and significance. Biotropica 13:131–140

    Article  Google Scholar 

  • Benzing DH, Renfrow A (1971) Significance of the patterns of C02 exchange to the ecology and phylogeny of the Tillandsioideae ( Bromeliaceae ). Bull Torrey Bot Club 98:322–327

    Article  Google Scholar 

  • Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Bot Gaz 135:281–288

    Article  CAS  Google Scholar 

  • Benzing DH, Givnish TJ, Bermudes D (1985) Absorptive trichomes in Brocchinia reducta ( Bromeliaceae) and their evolutionary and systematic significance. Syst Bot 10:81–91

    Article  Google Scholar 

  • Callaghan TV (1984) Growth and translocation in a clonal southern hemisphere sedge; Uncinia meridensis. J Ecol 72:529–546

    Article  Google Scholar 

  • Coyne JA, Lande R (1985) The genetic basis of species differences in plants. Am Nat 126:141–145

    Article  Google Scholar 

  • Curtis JT (1946) Nutrient supply of epiphytic orchids in the mountains of Haiti. Ecology 27:264–266

    Article  Google Scholar 

  • Gentry CH, Dodson AH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann MO Bot Gard 74:205–233

    Article  Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel R, Weintraub J (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost-benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124:479–497

    Article  Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709

    Article  Google Scholar 

  • Hadley G, Williamson B (1972) Features of mycorrhizal infection in some Malayan orchids. New Phytol 71:1111–1118

    Article  Google Scholar 

  • Hosakawa T (1943) Studies on the life forms of vascular epiphytes and the epiphyte flora of Ponape, Micronesia. Trans Nat Hist Soc Taiwan 33:35–55, 71–89, 113–141

    Google Scholar 

  • Huxley CR (1980) Symbiosis between ants and epiphytes. Biol Rev 55:321–340

    Article  Google Scholar 

  • Janzen DH(1974) Epiphytic myrmecophytes in Sarawak:mutualism through the feeding of plants by ants. Biotropica 6:237–259

    Article  Google Scholar 

  • Keeley JE (1981) Isoetes howellii: a submerged aquatic CAM plant? Am J Bot 68:420–424

    Article  CAS  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kress WJ (1986) A symposium:the biology of tropical epiphytes. Selbyana 9:1–22

    Google Scholar 

  • Lüttge U (1985) Epiphyten:Evolution und Okophysiologie. Naturwissensehaften 72:557–566

    Article  Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:315–331

    Google Scholar 

  • Madison M (1977) Vascular epiphytes:their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Medina E (1974) Dark C02 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686

    Article  Google Scholar 

  • Nishio JN, Ting IP (1987) Carbon flow and metabolic specialization in the tissue of the crassulacean acid metabolism plant Peperomia camptotricha. Plant Physiol 84:600–604

    Article  PubMed  CAS  Google Scholar 

  • Peterson CA (1988) Exodermal Casparian bonds:their significance for ion uptake of roots. Physiol Plant 72:204–208

    Article  CAS  Google Scholar 

  • Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical dicotyledonous trees of the genus Clusia. Trees 1:238–247

    Article  CAS  Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malatm complex in Trinidad. I. The bromeliad flora. Evolution 2:58–89

    Article  PubMed  CAS  Google Scholar 

  • Putz FE, Holbrook NM (1986) Notes on the natural history of hemiepiphytes. Selbyana 9:61–69

    Google Scholar 

  • Ramirez WB (1977) Evolution of the strangling habit in Ficus L., subg. urostiqma (Moraceae). Brenesia 12 /13:11–19

    Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants:a cost-benefit analysis in relation of efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Raven JA (1988) Acquisition of nitrogen by the shoots of land plants:its occurrence and implications for acid base regulation. New Phytol 109:1–20

    Article  CAS  Google Scholar 

  • Richards PW (1952) The tropical rain forest:an ecological study. Cambridge University Press, Cambridge (Eng.), 450 pp

    Google Scholar 

  • Richardson K, Griffiths H, Reed ML, Raven JA, Griffiths NM (1984) Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L. Oecologia 61:115–121

    Article  Google Scholar 

  • Sanford WW (1974) The ecology of orchids. In Withner CL (ed) The orchids:scientific studies. Wiley, New York, pp 1–100

    Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas. Bot Mitt Tropen II. G. Fischer, Jena

    Google Scholar 

  • Schmid R, Schmid MJ (1977) Fossil history of the Orchidaceae. In:Arditti J (ed) Orchid biology—reviews and perspectives, I. Cornell University Press, Ithaca, pp 25–46

    Google Scholar 

  • Sipes DL, Ting IP (1985) Crassulacean acid metabolism and Crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77:59–63

    Article  PubMed  CAS  Google Scholar 

  • Sternberg L da SL, Ting IP, Price D, Hann J (1987) Photosynthesis in epiphytic and rooted Clusia rosea Jacq. Oecologia (Berlin) 72:457–460

    Article  Google Scholar 

  • St. John BJ, Smith SE, Nicholas DJD, Smith FA (1985) Enzymes of ammonium assimilation in the mycorrhizal fungus Pezizella ericae Read. New Phytol 100:579–584

    Article  Google Scholar 

  • Stribley DP, Read DJ (1975) Some nutritional aspects of the biology of ericaceous mycorrhizas. In:Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, New York, pp 195–207

    Google Scholar 

  • Ting IP, Lord EM, Sternberg L da SL, DeNiro MJ (1985) Crassulacean acid metabolism in the strangler Clusia rosea Jacq. Science 229:969–971

    Article  PubMed  CAS  Google Scholar 

  • Tinoco Ojanguren C, Vasquez-Yanes C (1983) Especies CAM in la selva humeda tropical de Los Tuxtlas, Veracruz. Bol Soc Mex 45:150–153

    Google Scholar 

  • Walbot V, Cullis CA (1985) Rapid genomic change in higher plants. Annu Rev Plant Physiol 36:367–396

    Article  CAS  Google Scholar 

  • Wallace BJ (1981) The Australian vascular epiphytes:flora and ecology. Doctoral thesis, University of New England, New South Wales, Australia

    Google Scholar 

  • Watson MA, Casper BB (1984) Morphogenetic constraints on patterns of carbon distribution in plants. Annu Rev Ecol Syst 15:233–258

    Article  Google Scholar 

  • Welker JM, Rykiel EJ, Briske DD, Goeschl JD (1985) Carbon import among vegetative tillers within two bunchgrasses:assessment with carbon-11 labelling. Oecologia 67:209–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benzing, D.H. (1989). The Evolution of Epiphytism. In: Lüttge, U. (eds) Vascular Plants as Epiphytes. Ecological Studies, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74465-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74465-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74467-9

  • Online ISBN: 978-3-642-74465-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics