Skip to main content

Dicotyledons

  • Chapter
Sieve Elements

Abstract

The sieve elements of angiosperms are regarded as the most highly evolved among vascular plants, and those of the dicotyledons have received the greatest attention in the literature on phloem. By definition, the sieve elements of dicotyledons are sieve-tube members; that is, sieve elements in which some of the sieve areas are more highly specialized (having larger pores) than others and are localized on the walls to form sieve plates (Esau 1969). Typically, the sieve plates occur on the end walls, and the sieve-tube members are arranged end-on-end to form sieve tubes, the sieve-plate pores providing a high degree of protoplasmic continuity between the superimposed cells (Figs. 6.1–6.3). The protoplasts of dicotyledonous sieve-tube members typically contain P-protein (phloem protein). In addition to the presence of sieve plates and P-protein, the sieve-tube members of dicotyledons typically are associated with companion cells, specialized parenchyma cells closely related to the sieve-tube members both ontogenetically and functionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arsanto J-P (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212.

    Article  CAS  Google Scholar 

  • Arsanto J-P, Coulon J (1974) Détections radio-autographique et eytochimique des sites d’élaboration ou de transit des précurseurs polysaccarides pariétaux dans les cellules criblées en cours de différenciation du métaphloème caulinaire de deux Cucurbitacées voisines (Cucurbita pepo L. et Ecballium elaterium R.). C R Acad Sci Paris Ser D 278: 2775–2778.

    CAS  Google Scholar 

  • Arsanto J-P, Coulon J (1975) Application des méthodes cytochimique et radioautographique de détection ultrastructurale des polysaccarides à l’étude de la différenciation des plateaux criblées du métaphloème caulinaire de deux Cucurbitacées voisines (Ecballium elaterium R. et ucurbita pepo L.). C R Acad Sci Paris Ser D 280: 601–604.

    Google Scholar 

  • Barclay GF, Johnson RPC (1982) Analysis of particle motion in sieve tubes of Heracleum. Plant Cell Environ 5:173–178.

    Google Scholar 

  • Behnke H-D (1971a) Über den Feinbau verdickter (nacré) Wände und der Piastiden in den Siebröhren von Annona und Myristica. Protoplasma 72: 69–78.

    Article  Google Scholar 

  • Behnke H-D (1971b) The contents of the sieve-plate pores in Aristolochia. J Ultrastruct Res 36:493–498.

    Article  PubMed  CAS  Google Scholar 

  • Behnke H-D (1974) Comparative ultrastructural investigations of angiosperm sieve elements: aspects of the origin and early development of P-protein. Z Pflanzenphysiol 74: 22–34.

    Google Scholar 

  • Behnke H-D (1975a) P-type sieve-element plastids: a correlative ultrastructural and ultrahisto-chemical study on the diversity and uniformity of a new reliable character in seed plant systematics. Protoplasma 83: 91–101.

    Article  Google Scholar 

  • Behnke H-D (1975b) Companion cells and transfer cells. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 153–175.

    Google Scholar 

  • Behnke H-D (1976) Ultrastructure of sieve-element plastids in Caryophyllales (Centrospermae), evidence for the delimitation and classification of the order. Plant Syst Evol 126:31–54.

    Article  Google Scholar 

  • Behnke H-D (1981) Sieve-element characters. Nord J Bot 1: 381–400.

    Article  Google Scholar 

  • Behnke H-D (1986) Sieve element characters and the systematic position of Austrobaileya, Austrobaileyaceae — with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152:101–121.

    Article  Google Scholar 

  • Behnke H-D, Kiritsis U (1983) Ultrastructure and differentiation of sieve elements in primitive angiosperms. I. Winteraceae. Protoplasma 118:148–156.

    Article  Google Scholar 

  • Behnke H-D, Schulz A (1983) The development of specific sieve-element plastids in wound phloem of Coleus blumei (S-type) and Pisum sativum (P-type), regenerated from amyloplast-containing parenchyma cells. Protoplasma 114: 125–132.

    Article  Google Scholar 

  • Bentwood BJ, Cronshaw J (1978) Cytochemical localization of adenosine triphosphatase in the phloem of Pisum sativum and its relation to the function of transfer cells. Planta 140:111–120.

    Article  CAS  Google Scholar 

  • Botha CEJ, Evert RF (1981) Studies on Artemisia afra Jacq∴ the phloem in stem and leaf. Protoplasma 109: 217–231.

    Article  Google Scholar 

  • Browning AJ, Hall JL, Baker DA (1980) Cytochemical localization of ATPase activity in phloem tissues of Ricinus communis. Protoplasma 104: 55–65.

    Article  CAS  Google Scholar 

  • Catesson A-M (1973) Observations cytochimiques sur les tubes criblées de quelques angiospermes. J Microsc (Paris) 16: 95–104.

    CAS  Google Scholar 

  • Cateson A-M (1980) Localization of phloem oxidases. Ber Dtsch Bot Ges 93:141–152.

    Google Scholar 

  • Catesson A-M (1982) Cell wall architecture in the secondary sieve tubes of Acer and Populus. Ann Bot (London) 49:131–134.

    Google Scholar 

  • Catesson A-M, Liberman-Maxe M (1974) Les mitochondries des cellules criblées: réactions avec la 3,3’-diamino-benzidine. C R Acad Sci Paris Ser D 278: 2771–2773.

    CAS  Google Scholar 

  • Couot-Gastelier J (1982) Particularités fonctionnelles et infrastructurales du tissu phloémien du Vicia faba L. Beitr Biol Pflanzen 57: 257–268.

    Google Scholar 

  • Cronshaw J (1975a) P-proteins. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 79–115.

    Google Scholar 

  • Cronshaw J (1975b) Sieve element walls. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 129–147.

    Google Scholar 

  • Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93: 123–139.

    CAS  Google Scholar 

  • Cronshaw J, Anderson R (1971) Phloem differentiation in tobacco pith culture. J Ultrastruct Res 34: 244–259.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1968) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Davis JD, Evert RF (1968) Seasonal development of the secondary phloem in Populus tremuloides. Bot Gaz 129:1–8.

    Article  Google Scholar 

  • Davis JD, Evert RF (1970) Seasonal cycle of phloem development in woody vines. Bot Gaz 131:128–138.

    Article  Google Scholar 

  • De Maria ME, Thaine R (1974) Strands in sieve tubes in longitudinal cryostat sections of Cucurbita pepo stems. J Exp Bot 25: 871–885.

    Article  Google Scholar 

  • Dempsey GP, Bullivant S, Bieleski RL (1975) The distribution of P-protein in mature sieve elements of celery. Planta 126: 45–59.

    Article  Google Scholar 

  • Derr WF, Evert RF (1967) The cambium and seasonal development of the phloem in Robinia pseudoacacia. Am J Bot 54:147–153.

    Article  Google Scholar 

  • Deshpande BP (1974a) Development of the sieve plate in Saxifraga sarmentosa L. Ann Bot (London) 38:151–158.

    Google Scholar 

  • Deshpande BP (1974b) On the occurrence of spiny vesicles in the phloem of Salix. Ann Bot (London) 38: 865–868.

    Google Scholar 

  • Deshpande BP (1975) Differentiation of the sieve plate of Cucurbita: a further view. Ann Bot (London) 39: 1015–1022.

    Google Scholar 

  • Deshpande BP (1976a) Observations on the fine structure of plant cell walls. II. The microfibrillar framework of the parenchymatous cell wall in Cucurbita. Ann Bot (London) 40:439–442.

    Google Scholar 

  • Deshpande BP (1976b) Observations on the fine structure of plant cell walls. III. The sieve-tube wall in Cucurbita. Ann Bot (London) 40: 443–446.

    Google Scholar 

  • Deshpande BP (1984) Distribution of P-protein in mature sieve elements of Cucurbita maxima seedlings subjected to prolonged darkness. Ann Bot (London) 53: 237–247.

    Google Scholar 

  • Deshpande BP, Evert RF (1970) A reevaluation of extruded nucleoli in. sieve elements. J Ultrastruct Res 33: 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Deshpande BP, Rajendrababu T (1985) Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia, a deciduous tree from India. Ann Bot (London) 56: 61–77.

    Google Scholar 

  • Dute RR, Sharkey CL (1985) Phloem of primitive angiosperms. III. Phloem of petioles of Drimys granadensis (Winteraceae). Proc Iowa Acad Sci 92:104–110.

    Google Scholar 

  • Esau K (1948) Phloem structure in the grapevine, and its seasonal changes. Hilgardia 18:217–296.

    Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt 2. Borntraeger, Berlin Stuttgart, 505 pp.

    Google Scholar 

  • Esau K (1971) Development of P-protein in sieve elements of Mimosa pudica. Protoplasma 73:225–238.

    Article  Google Scholar 

  • Esau K (1975) The phloem of Nelumbo nucifera Gaertn. Ann Bot (London) 39: 901–913.

    Google Scholar 

  • Esau K (1978a) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63: 224–235.

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1978b) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot (London) 42:1–13.

    Google Scholar 

  • Esau K, Charvat ID (1975) An ultrastructural study of acid phosphatase localization in cells of Phaseolus vulgaris phloem by the use of the azo dye method. Tissue Cell 7: 619–630.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Cheadle VI (1958) Wall thickening in sieve elements. Proc Natl Acad Sci USA 44:546–553.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Cronshaw J (1968) Plastids and mitochondria in the phloem of Curcurbita. Can J Bot 46: 877–880.

    Article  Google Scholar 

  • Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34: 144–158.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Gill RH (1972) Nucleus and endoplasmic reticulum in differentiating root protophloem of Nicotiana tabacum. J Ultrastruct Res 41:160–175.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Hoefert LL (1971) Composition and fine structure of minor veins in Tetragonia leaf. Protoplasma 72: 237–253.

    Article  Google Scholar 

  • Esau K, Hoefert LL (1980) Endoplasmic reticulum and its relation to microtubules in sieve elements of sugarbeet and spinach. J Ultrastruct Res 71: 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Magyarosy AC (1979a) A crystalline inclusion in sieve element nuclei of Amsinckia. I. The inclusion in differentiating cells. J Cell Sci 38:1–10.

    PubMed  CAS  Google Scholar 

  • Esau K, Magyarosy AC (1979b) A crystalline inclusion in sieve element nuclei of Amsinckia. II. The inclusion in maturing cells. J Cell Sci 38:11–22.

    PubMed  CAS  Google Scholar 

  • Esau K, Thorsch J (1982) Nuclear crystalloids in sieve elements of species of Echium (Boragniaceae). J Cell Sci 54:149–160.

    Google Scholar 

  • Esau K, Thorsch J (1984) The sieve plate of Echium (Boraginaceae): developmental aspects and response of P-protein to protein digestion. J Ultrastruct Res 86: 31–45.

    Article  CAS  Google Scholar 

  • Esau K, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J Bot 72:1641–1653.

    Article  Google Scholar 

  • Eschrich W (1975) Sealing systems in phloem. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, NS vol 1. Springer, Berlin Heidelberg New York, pp 39–56.

    Google Scholar 

  • Evert RF (1960) Phloem structure in Pyrus communis L. and its seasonal changes. Univ Cal Berkeley Publ Bot 32:127–194.

    Google Scholar 

  • Evert RF (1962) Some aspects of phloem development in Tilia americana. Am J Bot 49: 659.

    Google Scholar 

  • Evert RF (1963a) Ontogeny and structure of the secondary phloem in Pyrus malus. Am J Bot 50: 8–37.

    Article  Google Scholar 

  • Evert RF (1963b) Sclerified companion cells in Tilia americana. Bot Gaz 124: 262–264.

    Article  Google Scholar 

  • Evert RF (1963c) The cambium and seasonal development of the phloem in Pyrus malus. Am J Bot 50:149–159.

    Article  Google Scholar 

  • Evert RF (1977) Phloem structure and histochemistry. Annu Rev Plant Physiol 28:199–222.

    Article  CAS  Google Scholar 

  • Evert RF (1982) Sieve-tube structure in relation to function. BioScience 32: 789–795.

    Article  Google Scholar 

  • Evert RF (1984) Comparative structure of phloem. In: White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, Orlando, pp 145–234.

    Google Scholar 

  • Evert RF, Derr WF (1964) Callose substance in sieve elements. Am J Bot 51: 552–559.

    Article  CAS  Google Scholar 

  • Evert RF, Deshpande BP (1969) Electron microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Protoplasma 68: 403–432.

    Article  Google Scholar 

  • Evert RF, Mierzwa RJ (1986) Pathway(s) of assimilate movement from mesophyll cells to sieve tubes in the Beta vulgaris leaf. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Plant biology, vol 1. Phloem transport. Liss, New York, pp 419–432.

    Google Scholar 

  • Evert RF, Tucker CM, Davis JD, Deshpande BP (1969) Light microscope investigation of sieve-element ontogeny and structure in Ulmus americana. Am J Bot 56: 999–1017.

    Article  Google Scholar 

  • Evert RF, Davis JD, Tucker CM, Alfieri FJ (1970) On the occurrence of nuclei in mature sieve elements. Planta 95: 281–296.

    Article  Google Scholar 

  • Evert RF, Deshpande BP, Eichhorn SE (1971) Lateral sieve-area pores in woody dicotyledons. Can J Bot 49:1509–1515.

    Article  Google Scholar 

  • Evert RF, Eschrich W, Eichhorn SE (1973) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109: 193–210.

    Article  CAS  Google Scholar 

  • Fellows RJ, Geiger DR (1974) Structural and physiological changes in sugar beet leaves during sink to source conversion. Plant Physiol 54: 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Fensom DS (1972) A theory of translocation in phloem of Heracleum by contractile protein microfibrillar material. Can J Bot 50: 479–497.

    Article  CAS  Google Scholar 

  • Fensom DS, Williams EJ (1974) On Allen’s suggestion for long-distance translocation in phloem of plants. Nature (London) 250; 490–492.

    Article  Google Scholar 

  • Fischer A (1884) Untersuchungen über das Siebröhren-System der Cucurbitaceen. Borntraeger, Berlin.

    Google Scholar 

  • Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56: 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Fisher DG (1986) Ultrastructure, plasmodesmatal frequency, and solute concentration in green areas of variegated Coleus blumei Benth. leaves. Planta 169:141–152.

    Article  Google Scholar 

  • Fisher DG, Evert RF (1982) Studies on the leaf of Amaranthus retroflexus (Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading. Planta 155: 377–387.

    Article  CAS  Google Scholar 

  • Friis J, Dute RR (1983) Phloem of primitive angiosperms. II. P-protein in selected species of the Ranalean complex. Proc Iowa Acad Sci 90: 78–84.

    Google Scholar 

  • Gamalei YV (1985) Characteristics of phloem loading in woody and herbaceous plants. Sov Plant Physiol 32: 656–665.

    Google Scholar 

  • Gamalei YY, Pakhomova MV (1983a) Minor veins of dicotyledonous leaves. I. Structure and typology. Bot Zh Leningrad 68: 287–301.

    Google Scholar 

  • Gamalei YV, Pakhomova MV (1983b) Minor veins of dicotyledonous leaves. II. Taxonomical distribution of the main types. Bot Zh Leningrad 68: 428–438.

    Google Scholar 

  • Ghouse AKM, Hashmi S (1979) Longevity of phloem in Polyalthia longifolia Benth. & Hook. Bull Torrey Bot Club 106:182–184.

    Article  Google Scholar 

  • Ghouse AKM, Hashmi S (1980a) Seasonal production of secondary phloem and its longevity in Mimusops elengi L. Flora 170: 175–179.

    Google Scholar 

  • Ghouse AKM, Hashmi S (1980b) Longevity of secondary phloem in Delonix regia Rafin. Proc Indian Acad Sci 89: 67–72.

    Article  Google Scholar 

  • Giaquinta R (1980) Mechanism and control of phloem loading of sucrose. Ber Dtsch Bot Ges 93: 187–201.

    CAS  Google Scholar 

  • Giaquinta RT, Geiger DR (1973) Mechanism of inhibition of translocation by localized chilling. Plant Physiol 51: 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1973a) The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res 44: 388–404.

    Article  PubMed  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1973b) Adenosine triphosphatase in the phloem of Cucurbita. Planta 110:189–204.

    Article  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1974) A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem of Nicotiana tabacum. J Cell Biol 60: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Gilliland MG, van Staden J, Bruton AG (1984) Studies on the translocation system of guayule (Parthenium argentatum Gray). Protoplasma 122:169–177.

    Article  Google Scholar 

  • Goff CW (1973) Localization of nucleoside diphosphatase in the onion root tip. Protoplasma 78:397–416.

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES (1976) The role of plasmodesmata in short distance transport to and from the phloem. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 203–227.

    Chapter  Google Scholar 

  • Gunning BES, Pate JS, Briarty LG (1968) Specialized “transfer cells” in minor veins of leaves and their possible significance in phloem translocation. J Cell Biol 37: C7–C12.

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES, Pate JS, Minchin FR, Marks I (1974) Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp Soc Exp Biol 28: 87–126.

    PubMed  CAS  Google Scholar 

  • Hartig T (1854) Über die Querscheidewände zwischen den einzelnen Gliedern der Siebröhren in Cucurbita pepo. Bot Z 12: 51–54.

    Google Scholar 

  • Hoefert LL (1979) Ultrastructure of devoloping sieve elements in Thlaspi arvense L. I. The immature state. Am J Bot 66: 925–932.

    Article  Google Scholar 

  • Hoefert LL (1980) Ultrastructure of developing sieve elements in Thlaspi arvense L. II. Maturation. Am J Bot 67:194–201.

    Article  Google Scholar 

  • Holdheide W (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freund H (ed) Handbuch der Mikroskopie in der Technik, vol 5, pt 1. Umschau, Frankfurt am Main, pp 193–367.

    Google Scholar 

  • Ilker R, Currier HB (1975) Histochemical studies of an inclusion body and P-protein in phloem of Xylosma congestum. Protoplasma 85:127–132.

    Article  Google Scholar 

  • Jarvis P, Thaine R, Leonard JW (1973) Structures in sieve elements cut with a cryostat following different rates of freezing. J Exp Bot 24: 905–919.

    Article  Google Scholar 

  • Johnson RPC, Freundlich A, Barclay GF (1976) Transcellular strands in sieve tubes; what are they? J Exp Bot 27: 1117–1136.

    Article  Google Scholar 

  • Jørgensen LB, Møller JD, Wagner P (1975) Secondary phloem of Trochodendron aralioides. Bot Tidsskr 69: 217–238.

    Google Scholar 

  • Kallarackal J, Milburn JA (1983) Studies on the phloem sealing mechanism in Ricinus fruit stalks. Aust J Plant Physiol 10: 561–568.

    Article  Google Scholar 

  • Kollmann R (1973) Cytologie des Phloems. In: Hirsch GC, Ruska H, Sitte P (eds) Grundlagen der Cytologie. Fischer, Jena, pp 479–505.

    Google Scholar 

  • Kollmann R (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806.

    Article  CAS  Google Scholar 

  • Laflèche D (1966) Ultrastructure et cytochimie des inclusions flagellées des cellules criblées de Phaseolus vulgaris. J Microsc (Paris) 5: 493–510.

    Google Scholar 

  • Lawton DM (1978a) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot (London) 42:353–361.

    Google Scholar 

  • Lawton DM (1978b) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11.

    Article  CAS  Google Scholar 

  • Lawton DM, Johnson RPC (1976) A superhelical model for the ultrastructure of “P-protein tubules” in sieve elements of Nymphoides pettata. Cytobiologie 14:1–17.

    CAS  Google Scholar 

  • Lawton DM, Newman YM (1979) Ultrastructure of phloem in young runner-bean stem: discovery, in old sieve elements on the brink of collapse, of parietal bundles of P-protein tubules linked to the plasmalemma. New Phytol 82: 213–222.

    Article  Google Scholar 

  • Lawton JR (1976) Seasonal variation in the secondary phloem from the main trunks of willow and sycamore trees. New Phytol 77: 761–771.

    Article  Google Scholar 

  • Lawton JR (1977) An investigation of the functional phloem in willow. New Phytol 78:189–192.

    Article  Google Scholar 

  • Lawton JR, Lawton JRS (1971) Seasonal variations in the secondary phloem of some forest trees from Nigeria. New Phytol 70:187–196.

    Article  Google Scholar 

  • Lee DR, Arnold DC, Fensom DS (1971) Some microscopical observations of functioning sieve tubes of Heracleum using Nomarski optics. J Exp Bot 22: 25–38.

    Article  Google Scholar 

  • Lehmann J (1979) Nachweis von ATP und ATP-ase in den Siebröhren von Cucurbita pepo. Z Pflanzenphysiol 94: 331–338.

    CAS  Google Scholar 

  • Lu C-Y, Chiang S-HT (1975) Seasonal activity of the cambium in the young branch of Liquidambar formosana Hance. Taiwania 20: 32–47.

    Google Scholar 

  • Lucas WJ, Franceschi VR (1982) Organization of the sieve-element walls of leaf minor veins. J Ultrastruct Res 81: 209–221.

    Article  PubMed  CAS  Google Scholar 

  • McCauley MAM (1987) Structural studies on the leaf of potato (Solarium tuberosum L.). Ph D Thesis, Univ Wisc, Madison.

    Google Scholar 

  • Murphy R (1986) A reanalysis of particle motion in sieve tubes of Heracleum. Ann Bot (London) 57: 667–674.

    Google Scholar 

  • Nehls R, Schaffner G, Kollmann R (1978) Feinstruktur des Protein-Einschlusses in den Sieb-elementen von Salix sachalinensis Fr. Schmidt. Z Pflanzenphysiol 87:113–127.

    Google Scholar 

  • Oberhäuser R, Kollmann R (1977) Cytochemische Charakterisierung des sogenannten “Freien Nucleolus” als Proteinkörper in den Siebelementen von Passiflora coerulea. Z Pflanzenphysiol 84: 61–75.

    Google Scholar 

  • Oparka KJ, Johnson RPC (1978) Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides pettata. Planta 143: 21–27.

    Article  Google Scholar 

  • Oparka KJ, Johnson RPC, Bowen JD (1981) Sites of acid phosphatase in the differentiating root protophloem of Nymphoides pettata (S. G. Gmel.) O. Kuntze. Plant Cell Environ 4:27–35.

    Article  CAS  Google Scholar 

  • Palevitz BA, Newcomb EH (1970) A study of sieve element starch using sequential enzymatic digestion and electron microscopy. J Cell Biol 45: 383–398.

    Article  PubMed  CAS  Google Scholar 

  • Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426.

    Article  Google Scholar 

  • Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 7: 17–36.

    Google Scholar 

  • Parthasarathy MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815.

    Article  Google Scholar 

  • Pate JS, Gunning BES (1969) Vascular transfer cells in angiosperm leaves. A taxonomic and morphological survey. Protoplasma 68:135–156.

    Article  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196.

    Article  Google Scholar 

  • Pickett-Heaps JD (1967) The use of radioautography for investigating wall secretion in plant cells. Protoplasma 64: 49–66.

    Article  Google Scholar 

  • Read SM, Northcote DH (1983a) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem 134: 561–569.

    Article  PubMed  CAS  Google Scholar 

  • Read SM, Northcote DH (1983b) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta 158: 119–127.

    Article  CAS  Google Scholar 

  • Robidoux J, Sandborn EB, Fensom DS, Cameron ML (1973) Plasmatic filaments and particles in mature sieve elements of Heracleum sphondylium under the electron microscope. J Exp Bot 24: 349–359.

    Article  Google Scholar 

  • Roland J-C, Sandoz D (1969) Détection cytochimique des sites de formation des polysaccharides pré-membranaires dans les cellules végétales. J Microsc (Paris) 8: 263–268.

    Google Scholar 

  • Russin WA, Evert RF (1985) Studies on the leaf of Populus deltoides (Salicaceae): ultrastructure, plasmodesmatal frequency, and solute concentrations. Am J Bot 72: 1232–1247.

    Article  Google Scholar 

  • Sabnis DD, Hart JW (1979) Heterogeneitiy in phloem protein complements from different species. Consequences to hypotheses concerned with P-protein function. Planta 145:459–466.

    Article  CAS  Google Scholar 

  • Schaad NW, Wilson EE (1970) Structure and seasonal development of secondary phloem of Juglans regia. Can J Bot 48:1049–1053.

    Article  Google Scholar 

  • Sjolund RD, Shih CY (1983a) Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. J Ultrastruct Res 82:111–121.

    Article  PubMed  CAS  Google Scholar 

  • Sjolund RD, Shih CY (1983b) Freeze-fracture analysis of phloem structure in plant tissue cultures. II. The sieve element plasma membrane. J Ultrastruct Res 82:189–197.

    Article  PubMed  CAS  Google Scholar 

  • Sjolund RD, Shih CY, Jensen KG (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. III. P-protein, sieve area pores, and wounding. J Ultrastruct Res 82:198–211.

    Article  PubMed  CAS  Google Scholar 

  • Spanner DC (1978a) Sieve-plate pores, open or occluded? A critical review. Plant Cell Environ 1:7–20.

    Article  Google Scholar 

  • Spanner DC (1978b) The Münch hypothesis, freeze-substitution and the structure of sieve-plate pores. Ann Bot (London) 42: 485–488.

    Google Scholar 

  • Spanner DC, Moattari F (1978) The significance of P-protein and endoplasmic reticulum in sieve elements in light of evolutionary origins. Ann Bot (London) 42:1469–1472.

    CAS  Google Scholar 

  • Srivastava LM (1970) The secondary phloem of Austrobaileya scandens. Can J Bot 48: 341–359.

    Article  Google Scholar 

  • Thaine R, Probine MC, Dyer PY (1967) The existence of transcellular strands in mature sieve elements. J Exp Bot 18:110–127.

    Article  Google Scholar 

  • Thaine R, De Maria ME, Sarisalo HIM (1975) Evidence of transcellular strands in transverse cryostat sections of Cucurbita pepo sieve tubes. J Exp Bot 26: 91–101.

    Article  Google Scholar 

  • Thorsch J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194.

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981c) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75: 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1982) Microtubules in differentiating sieve elements of Gossypium hirsutum. J Ultrastruct Res 78: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1985) An ultrastructural study of the phloem of Drimys (Winteraceae). IAWA Bull 6: 255–268.

    Google Scholar 

  • Tucker CM, Evert RF (1969) Seasonal development of the secondary phloem in Acer negundo. Am J Bot 56: 275–284.

    Article  Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in Cucurbita pepo leaves. Protoplasma 83: 217–232.

    Article  Google Scholar 

  • Walsh MA, Popovich TM (1977) Some ultrastructural aspects of metaphloem sieve elements in the aerial stem of the holoparasitic angiosperm Epifagus virginiana (Orobanchaceae). Am J Bot 64: 326–336.

    Article  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71: 365–388.

    Article  Google Scholar 

  • Wergin WP, Palevitz BA, Newcomb EH (1975) Structure and development of P-protein in phloem parenchyma and companion cells of legumes. Tissue Cell 7: 227–242.

    Article  PubMed  CAS  Google Scholar 

  • Whitmore TC (1962) Studies in systematic bark morphology. II. General features of bark construction in Dipterocarpaceae. New Phytol 61: 208–220.

    Article  Google Scholar 

  • Wooding FBP (1967) Fine structure and development of phloem sieve tube content. Protoplasma 64: 315–324.

    Article  Google Scholar 

  • Yapa PAJ, Spanner DC (1972) The effect of protease digestion (in situ) on the slime substance of mature sieve tubes. Planta 107: 89–96.

    Article  CAS  Google Scholar 

  • Yapa PAJ, Spanner DC (1974) Localisation of adenosine triphosphatase activity in mature sieve elements of Tetragonia. Planta 117: 321–328.

    Article  CAS  Google Scholar 

  • Zamski E, Zimmermann MH (1979) Sieve tube longevity in white ash Fraxinus americana) studies with a new histochemical test for the identification of sugar. Can J Bot 57: 650–656.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evert, R.F. (1990). Dicotyledons. In: Behnke, HD., Sjolund, R.D. (eds) Sieve Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74445-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74445-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74447-1

  • Online ISBN: 978-3-642-74445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics