Skip to main content

Circadian Rhythms in the Invertebrate Retina

  • Conference paper
Facets of Vision

Abstract

Sunlight is 100 million times more intense than starlight. Survival often requires an ability to see specific features of the environment over this wide range of illumination. Animals achieve this extraordinary feat by adapting their visual sensitivity to the ambient level of illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aréchiga H (1974) Circadian rhythm of sensory input in the crayfish. In: Schmidt FO (ed) The neurosciences 3rd study program. FO Schmitt (ed) MIT, New York, pp 517–523.

    Google Scholar 

  • Aréchiga H, Fuentes B (1970) Correlative changes between retinal shielding pigments position and electroretinogram in crayfish. Physiologist 13:137.

    Google Scholar 

  • Aréchiga H, Huberman A (1980) Hormonal modulation of circadian rhythmicity in crustaceans. In: Valverde C, Aréchiga H (eds) Frontiers of hormone-research, vol 6. Comparative aspects of neuroendocrine control of behavior. Basel, pp 16-34.

    Google Scholar 

  • Aréchiga H, Mena F (1975) Circadian variations of hormonal content in the nervous system of the crayfish. Comp Biochem Physiol 52A:581–584.

    Google Scholar 

  • Aréchiga H, Wiersma CAG (1969) Circadian rhythm of responsiveness in crayfish visual units. J Neurobiol 1:71–85.

    PubMed  Google Scholar 

  • Aréchiga H, Cortes JL, Garcia U, Rodriguez-Sosa L (1985) Neuroendocrine correlates of circadian rhythmicity in crustaceans. Am Zool 25:265–274.

    Google Scholar 

  • Aschoff J (1981) A survey on biological rhythms. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York, pp 3–10.

    Google Scholar 

  • Autrum H (1981) Light and dark adaptation in invertebrates. In: Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 1–91.

    Google Scholar 

  • Barattini S, Battisti B, Cervetto L, Marroni P (1981) Diurnal changes in the pigeon electroretinogram. Rev Can Biol 40:133–137.

    PubMed  CAS  Google Scholar 

  • Barlow RB, jr. (1983) Circadian rhythms in the Limulus visual system. J Neurosci 3:856–870.

    PubMed  Google Scholar 

  • Barlow RB, jr., Chamberlain SC (1980) Light and a circadian clock modulate structure and function in Limulus photoreceptors. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum, New York, pp 247–269.

    Google Scholar 

  • Barlow RB, jr., Kaplan E (1977) Properties of visual cells in the lateral eye of Limulus in situ: Intracellular recordings. J Gen Physiol 69:203–220.

    PubMed  Google Scholar 

  • Barlow RB, jr., Bolanowski SJ, Brachman ML (1977a) Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197:86–89.

    PubMed  Google Scholar 

  • Barlow RB, jr., Chamberlain SC, Kaplan E (1977b) Efferent inputs and serotonin enhance the sensitivity of the Limulus lateral eye. Biol Bull 153:414 (Abstr).

    Google Scholar 

  • Barlow RB, jr., Chamberlain SC, Levinson JZ (1980) Limulus brain modulates the structure and function of the lateral eye. Science 210:1037–1039.

    PubMed  Google Scholar 

  • Barlow RB, jr., Chamberlain SC, Bolanowski SJ, jr., Galway LA, jr., Joseph DP (1981) One eye modulates the sensitivity of another in Limulus. Invest Opthalmol Visual Sci (Suppl) 20:180.

    Google Scholar 

  • Barlow RB, jr., Ireland LC, Kass L (1982) Vision has a role in Limulus mating behavior. Nature (London) 296:65–66.

    Google Scholar 

  • Barlow RB, jr., Powers M-K, Kass L (1986a) Vision and mating behavior in Limulus. In: Popper AN, Fay R, Atema J, Travolga W (eds) Symp sensory biology of aquatic animals. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Barlow RB, jr., Powers M-K, Howard H, Kass L (1986b) Migratory behavior of Limulus for mating: relation to lunar phase, tide height, and sunlight. Biol Bull 171:320–329.

    Google Scholar 

  • Barlow RB, jr., Kaplan E, Renninger GH, Saito T (1987) Circadian rhythms in Limulus photoreceptors. I. Intracellular studies. J Gen Physiol 89:353–378.

    PubMed  Google Scholar 

  • Batra R (1983) Efferent control of visual processing in the lateral eye of the horseshoe crab. Ph D Diss, Inst Sens Res, Syracuse Univ.

    Google Scholar 

  • Batra R, Barlow RB, jr. (1982) Efferent control of pattern vision in Limulus lateral eye. Soc Neurosci Abstr 8:49.

    Google Scholar 

  • Batra R, Chamberlain SC (1985) Central connections of Limulus ventral photoreceptors revealed by intracellular staining. J Neurobiol 16:435–441.

    PubMed  CAS  Google Scholar 

  • Battelle B-A (1980) Neurotransmitter candidates in the visual system of Limulus polyphemus: Synthesis and distribution of octopamine. Vision Res 20:911–922.

    PubMed  CAS  Google Scholar 

  • Battelle B-A, Evans JA (1984) Octopamine release from centrifugal fibers of the Limulus peripheral visual system. J Neurochem 42:71–79.

    PubMed  CAS  Google Scholar 

  • Battelle B-A, Evans JA (1986) Veratridine-stimulated release of amine conjugates from centrifugal fibers in the Limulus peripheral visual system. J Neurochem 46:1464–1472.

    PubMed  CAS  Google Scholar 

  • Battelle B-A, Evans JA, Chamberlain SC (1982) Efferent fibers to Limulus eyes synthesize and release octopamine. Science 216:1250–1252.

    CAS  Google Scholar 

  • Battelle B-A, Edwards SC, Maresch HM, Pierce SK (1986) Synthesis of gamma-glutamyltyramine and gamma-glutamyloctopamine in the nervous system of Limulus polyphemus. Soc Neurosci Abstr 12:1292.

    Google Scholar 

  • Bennitt R (1932) Diurnal rhythm in the proximal pigment cells of the crayfish retina. Physiol Zool 5:65–69.

    Google Scholar 

  • Besharse J, Iuvone M (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature (London) 305:133–135.

    CAS  Google Scholar 

  • Block GD, McMahon D (1983) Localized illumination of the Aplysia and Bulla eye reveals relationships between retinal layers. Brain Res 265:134–137.

    PubMed  CAS  Google Scholar 

  • Block GD, Wallace SF (1982) Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217:155–157.

    PubMed  CAS  Google Scholar 

  • Brandenburg J, Bobbert AC, Eggelmeyer F (1983) Circadian changes in the response of the rabbit’s retina to flashes. Behav Brain Res 7:113–123.

    PubMed  CAS  Google Scholar 

  • Brann MR, Cohen LV (1987) Diurnal expression of transducin mRNA and translocation of transduein in rods of rat retina. Science 235:585–587.

    PubMed  CAS  Google Scholar 

  • Calman BG, Chamberlain SC (1982) Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure. J Gen Physiol 80:839–862.

    PubMed  CAS  Google Scholar 

  • Carricaburu P, Muños-Cuevas A (1986) Spontaneous electrical activity of the suboesophageal ganglion and circadian rhythms in scorpions. Exp Biol 45:301–310.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1977) Morphological correlates of efferent circadian activity and light adaptation in the Limulus lateral eye. Biol Bull 153:418–419 (Abstr).

    Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1979) Light and efferent activity control rhabdom turnover in Limulus photoreceptors. Science 206:361–363.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1980) Neuroanatomy of the visual efferents in the horseshoe crab (Limulus polyphemus). J Comp Neurol 192:387–400.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1981) Modulation of retinal structure in Limulus lateral eye: Interactions of light and efferent inputs. Invest Ophthalmol Visual Sci (Suppl) 20:75.

    Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1984) Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. J Neurosci 4:2792–2810.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Barlow RB, jr. (1987) Control of structural rhythms in the lateral eye of Limulus. Interactions of diurnal lighting and circadian efferent activity. J Neurosci 7:2135–2144.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Engbretson GA (1982) Neuropeptide immunoreactivity in Limulus. I. Substance P-like immunoreactivity in the lateral eye and protocerebrum. J Comp Neurol 208:304–315.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Fiacco PA (1985) Models of circadian changes in Limulus ommatidia: Calculations of changes in acceptance angle, quantum catch, and quantum gain. Invest Ophthalmol Visual Sci Suppl 26:340.

    Google Scholar 

  • Chamberlain SC, Lewandowski TJ (1986) Colocalization of FMRFamide and substance P-like immunoreactivities in neurons of the horseshoe crab brain and retina. Soc Neurosci Abstr 12:628.

    Google Scholar 

  • Chamberlain SC, Pepper J, Battelle B-A, Wyse GA, Lewandowski TJ (1986) Immunoreactivity in Limulus. II. Studies of serotonin-like immunoreactivity, endogenous serotonin, and serotonin synthesis in the brain and lateral eye. J Comp Neurol 251:363–375.

    PubMed  CAS  Google Scholar 

  • Chamberlain SC, Lehman HK, Schuyler PR, Vadasz A, Calman BG, Barlow RB, jr. (1987) Efferent activity and circulating hormones: Dual roles in controlling the structure and photomechanical movements of the Limulus lateral eye. Invest Opthalmol Visual Sci Suppl 28:186.

    Google Scholar 

  • Dearry A, Barlow RB, jr. (1987) Circadian rhythms in the green sunfish retina. J Gen Physiol 89:745–770.

    PubMed  CAS  Google Scholar 

  • Dearry A, Burnside B (1986) Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas. I. Induction of cone contraction is mediated by D2 receptors. J Neurochem 46:1006–1021.

    PubMed  CAS  Google Scholar 

  • Demoll R (1911) Über die Wanderung des Irispigments im Facettenauge. Zool Jahrb Physiol 30:159–180.

    Google Scholar 

  • Edwards SC, Battelle B-A (1987) Octopamine-and cyclic AMP-stimulated phosphorylation of a protein in Limulus ventral and lateral eyes. J Neurosci 7:2811–2820.

    PubMed  CAS  Google Scholar 

  • Eisele LE, Kass L, Barlow RB, jr. (1982) Circadian clock generates optic nerve activity in the excised Limulus brain. Biol Bull 163:382 (Abstr).

    Google Scholar 

  • Eskin A (1971) Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z Vergl Physiol 74:353–371.

    Google Scholar 

  • Evans JA, Battelle B-A, Chamberlain SC (1983) Audioradiographic localization of newly synthesized octopamine to retinal efferents and the Limulus visual system. J Comp Neurol 219:369–383.

    PubMed  CAS  Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 25:317–473.

    Google Scholar 

  • Evans PD (1981) Multiple receptor types for octopamine in the locust. J Physiol 318:99–122.

    PubMed  CAS  Google Scholar 

  • Exner S (1891) Die Physiologie der facettierten Augen von Krebsen und Insecten. Deuticke, Leipzig.

    Google Scholar 

  • Fahrenbach WH (1971) The morphology of the Limulus visual system IV. The lateral optic nerve. Z Zeilforsch 114:532–545.

    CAS  Google Scholar 

  • Fahrenbach WH (1973) The morphology of the Limulus visual system. V. Protocerebral neurosecretion and ocular innervation. Z Zellforsch 144:153–166.

    Google Scholar 

  • Fahrenbach WH (1975) The visual system of the horseshoe crab Limulus polyphemus. Int Rev Cyto 41:285–349.

    CAS  Google Scholar 

  • Fahrenbach WH (1981) The morphology of the Limulus visual system VII. Innervation of photoreceptor neurons by neurosecretory efferents. Cell Tissue Res 216:655–659.

    PubMed  CAS  Google Scholar 

  • Fahrenbach WH (1985) Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Proc R Soc London Ser B 225:219–249.

    CAS  Google Scholar 

  • Fernlund P (1976) Structure of a light-adapting hormone from the shrimp Pandalus borealis. Biochim Biophys Acta 439:17–35.

    PubMed  CAS  Google Scholar 

  • Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177:173–175.

    PubMed  CAS  Google Scholar 

  • Fleissner G (1982) Isolation of an insect circadian clock. J Comp Physiol A 149:311–316.

    Google Scholar 

  • Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comp Biochem Physiol A 61:69–71.

    Google Scholar 

  • Fleissner G, Fleissner G (1985) Neurobiology of a circadian clock in the visual system of scorpions. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York Tokyo, pp 351–375.

    Google Scholar 

  • Fleissner G, Heinrichs S (1982) Neurosecretory cells in the circadian clock system of the scorpion, Androctonus australis. Cell Tissue Res 224:233–238.

    PubMed  CAS  Google Scholar 

  • Fleissner G, Schliwa M (1977) Neurosecretory fibres in the median eyes of the scorpion, Androctonus australis L. Cell Tissue Res 178:189–198.

    PubMed  CAS  Google Scholar 

  • Fowlkes D, Karwoski C, Proenza L (1984) Endogenous circadian rhythm in electroretinogram of free-moving lizards. Invest Opthalmol Visual Sci 25:121–124.

    CAS  Google Scholar 

  • Hamm H, Menaker M (1980) Retinal rhythms in chicks: circadian variation in melatonin and serotonin N-acetyltransferase activity. Proc Natl Acad Sci USA 77:4998–5002.

    PubMed  CAS  Google Scholar 

  • Hanada Y, Kawamura H (1984) Circadian rhythms in synaptic excitability of the dorsal lateral geniculate nucleus in the rat. Int J Neurosci 22:253–262.

    PubMed  CAS  Google Scholar 

  • Hanna WJ, Horne JA, Renninger GH (1988) Circadian photoreceptor organs in Limulus. II. The talson. J Comp Physiol A 162:133–140.

    Google Scholar 

  • Hariyama T, Meyer-Rochow VB, Eguchi E (1986) Diurnal changes in structure and function of the compound eye of Ligia exotica (Crustacea, Isopoda). J Exp Biol 123:1–26.

    Google Scholar 

  • Hartline HK (1972) Visual receptors and retinal interaction. In: Nobel Lectures: Physiology or Medicine 1963–1970. Elsevier, New York, pp 269–288.

    Google Scholar 

  • Horne JA, Renninger GH (1988) Circadian photoreceptor organs in Limulus. I. Ventral, median, and lateral eyes. J Comp Physiol A 162:127–132.

    Google Scholar 

  • Jacklet JW (1984) Neural organization and cellular mechanisms of circadian pacemakers. Int Rev Cytol 89:251–294.

    PubMed  CAS  Google Scholar 

  • Jacklet JW, Rolerson C (1982) Electrical activity and structure of retinal cells of the Aplysia eye. II. Photoreceptors. J Exp Biol 99:381–395.

    Google Scholar 

  • Jacklet JW, Klose M, Goldberg M (1987) FMRFamide-like immunoreactive efferent fibers and FMRF-amide suppression of pacemaker neurons in eyes of Bulla. J Neurobiol 18:433–449.

    PubMed  CAS  Google Scholar 

  • Jahn TL, Crescitelli F (1940) Diurnal changes in the electrical response of the compound eye. Biol Bull 78:42–52.

    Google Scholar 

  • Jahn TL, Wulff VJ (1943) Electrical aspects of a diurnal rhythm in the eye of Dytiscus fasciventris. Physiol Zool 16:101–109.

    Google Scholar 

  • Josefsson L (1973) Invertebrate neuropeptide hormones. Int J Peptide Protein Res 21:459–470.

    Google Scholar 

  • Kaplan E, Barlow RB, jr. (1980) Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature (London) 286:393–395.

    CAS  Google Scholar 

  • Kaplan E, Barlow RB, jr., Renninger GH (1986) The circadian clock in the Limulus brain modifies the electrical properties of the photoreceptor membrane. Biol Bull 171:495 (Abstr).

    Google Scholar 

  • Kass L (1985) Circadian alteration of dark adaptation in Limulus lateral eye. Soc Neurosci Abstr 11:474.

    Google Scholar 

  • Kass L, Barlow RB, jr. (1980) Octopamine increases the ERG of the Limulus lateral eye. Biol Bull 159:487 (Abstr).

    Google Scholar 

  • Kass L, Barlow RB, jr. (1982) Efferent neurotransmission of circadian rhythms in the Limulus lateral eye: specificity for octopamine. Invest Ophthalmol Visual Sci Suppl 22:179.

    Google Scholar 

  • Kass L, Barlow RB, jr. (1984) Efferent neurotransmission of circadian rhythms in Limulus lateral eye. I. Octopamine-induced increases in retinal sensitivity. J Neurosci 4:904–917.

    Google Scholar 

  • Kass L, Pelletier JL, Renninger GH, Barlow RB, jr. (1983) cAMP: A possible intracellular transmitter of circadian rhythms in Limulus photoreceptors. Biol Bull 165:540 (Abstr).

    Google Scholar 

  • Kass L, Renninger G, Barlow RB, jr. (1987) In preparation.

    Google Scholar 

  • Kaupp UB, Malbon CC, Battelle B-A, and Brown JE (1982) Octopamine stimulated rise in cAMP in Limulus ventral photoreceptors. Vision Res 22:1503–1506.

    PubMed  CAS  Google Scholar 

  • Kiesel A (1894) Untersuchungen zur Physiologie des facettierten Auges. Sitzungsber Kais Akad Wiss Wien Math Nat Kl 103:97–139.

    Google Scholar 

  • Land MF (1979) The optical mechanism of the eye of Limulus. Nature (London) 280:396–397.

    Google Scholar 

  • Larimer JL, Smith JTF (1980) Orcadian rhythm of retinal sensitivity in crayfish: Modulation by the cerebral and optic ganglia. J Comp Physiol A 136:313–326.

    Google Scholar 

  • La Vail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1074.

    Google Scholar 

  • Lehman HK, Barlow RB, jr. (1987) An efferent neuropeptide in the eye of Limulus. Soc Neurosci Abstr 13:237.

    Google Scholar 

  • Levi-Setti R, Park D, Winston R (1975) The corneal cones of Limulus as optimised light concentrators. Nature (London) 253:115–116.

    CAS  Google Scholar 

  • Levinson G, Burnside B (1981) Circadian rhythms in teleost retinomotor movements. Invest Ophthalmol Vis Sci 20:294–303.

    PubMed  CAS  Google Scholar 

  • Lingle CE, Marder E, Nathanson JA (1982) The role of cyclic nucleotides in invertebrates. In: Kebabian JW, Nathanson JA (eds) Handbook of experimental pharmacology, vol 58II. Springer, Berlin Heidelberg New York, pp 787–845.

    Google Scholar 

  • Luborsky-Moore JL, Jacklet JW (1976) Aplysia eye: Modulation by efferent optic nerve activity. Brain Res 115:501–505.

    PubMed  CAS  Google Scholar 

  • Mancillas JR, Brown MR (1984) Neuropeptide modulation of photosensitivity. I. Presence, distribu-tion, and characterization of a Substance P-like peptide in the lateral eye of Limulus. J Neurosci 4:832–846.

    PubMed  CAS  Google Scholar 

  • Mancillas JR, Selverston AI (1984) Neuropeptide modulation of photosensitivity. II. Physiological and anatomical effects of Substance P on the lateral eye of Limulus. J Neurosci 4:847–859.

    PubMed  CAS  Google Scholar 

  • Mangel SC, Dowling JE (1987) The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proc R Soc London Ser B 231:91–121.

    CAS  Google Scholar 

  • McMahon DG (1985) Cellular mechanisms of circadian pacemaker entrainment in the mollusc Bulla. PhD Diss, Univ Virginia.

    Google Scholar 

  • Nathanson JA (1979) Octopamine receptors, adenosine 3′, 5′-monophosphate and neural control of firefly flashing. Science 203:65–68.

    PubMed  CAS  Google Scholar 

  • Olson LM, Jacklet JW (1985) The circadian pacemaker in the Aplysia eye sends axons throughout the central nervous system. J Neurosci 5:3214–3227.

    PubMed  CAS  Google Scholar 

  • Page TL (1981) Neural and endocrine control of circadian rhythmicity in invertebrates. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York, pp 145–172.

    Google Scholar 

  • Page TL, Larimer JL (1976) Extraretinal photoreception in entrainment of crustacean circadian rhythms. Photochem Photobiol 23:245–251.

    CAS  Google Scholar 

  • Patten W (1912) The evolution of the vertebrates and their kin. Blakiston, Philadelphia.

    Google Scholar 

  • Pelletier JL, Kass L, Renninger GH, Barlow RB, jr. (1984) cAMP and octopamine partially mimic a circadian clock’s effect on Limulus photoreceptors. Invest Ophthalmol Visual Sci Suppl 25:288.

    Google Scholar 

  • Pepose JS, Lisman JE (1978) Voltage-sensitive potassium channels in Limulus ventral photoreceptors. J Gen Physiol 71:101–120.

    PubMed  CAS  Google Scholar 

  • Pierce ME, Besharse JC (1985) Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol 86:671–689.

    PubMed  CAS  Google Scholar 

  • Powers MK, Barlow RB, jr. (1985) Behavioral correlates of circadian rhythms in the Limulus visual system. Biol Bull 169:578–591.

    Google Scholar 

  • Renninger GH (1983) Circadian changes in the frequency response of visual cells in the Limulus compound eye. Soc Neurosci Abstr 9:217.

    Google Scholar 

  • Renninger GH, Barlow RB, jr. (1979) Lateral inhibition, excitation, and the circadian rhythm of the Limulus compound eye. Soc Neurosci Abstr 5:804.

    Google Scholar 

  • Renninger GH, Kaplan E, Barlow RB, jr. (1984) A circadian clock increases the gain of photoreceptor cells of the Limulus lateral eye. Biol Bull 167:532 (Abstr).

    Google Scholar 

  • Rosenwasser AM, Raibert M, Terman JS, Terman M (1979) Circadian rhythm of luminance detect-ability in the rat. Physiol Behav 23:17–21.

    Google Scholar 

  • Schneider M, Lehman HK, Barlow RB, jr. (1987) Efferent neurotransmitters mediate differential effects in the Limulus lateral eye. Invest Ophthalmol Visual Sci Suppl 28:186.

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: Physical limitations and design. J Comp Physiol A 116:161–182.

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439.

    Google Scholar 

  • Takahashi JS, Zatz M (1982) Regulation of circadian rhythmicity. Science 217:1104–1111.

    PubMed  CAS  Google Scholar 

  • Welsh JH (1938) Diurnal rhythms. Q Rev Biol 13:123–139.

    Google Scholar 

  • Welsh JH (1941) The sinus gland and 24-hour cycles of retinal pigment migration in the crayfish. J Exp Zool 86:35–49.

    Google Scholar 

  • Wills SA, Page TL, Colwell CS (1985) Circadian rhythms in the electroretinogram of the cockroach. J Biol Rhythms 1:25–37.

    PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Prada M, Reme C (1984) Circadian rhythm in rat retinal dopamine. Neurosa Lett 45:21–25.

    CAS  Google Scholar 

  • Yamashita S, Tateda M (1978) Spectral sensitivities of the anterior median eyes of the orb web spiders, Argiope bruennichii and A. amoena. J Exp Biol 74:47–57.

    Google Scholar 

  • Yamashita S, Tateda H (1981) Efferent neural control in the eyes of orb weaving spiders. J Comp Physiol A 143:477–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barlow, R.B., Chamberlain, S.C., Lehman, H.K. (1989). Circadian Rhythms in the Invertebrate Retina. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics