Skip to main content

Aggregation of Particles, Settling Velocity of Mud Flocs A Review

  • Conference paper
Physical Processes in Estuaries

Abstract

A review is given of aggregation phenomena for fine-grained sediments in estuarine systems. Besides other important factors it is shown that the aggregation of fine sediment particles, resulting in much larger settling velocities, plays an important role in the fine sediment dynamics in estuaries. Various mechanisms that may be responsible for the aggregation of the sediment particles (salt flocculation, organic aggregation, bioflocculation, pelletization) and the effects of organic and metallic coatings are reviewed. It is often not easy to determine the dominant mechanisms, as illustrated by discussions on this subject in studies on the Rhine Estuary. There is a strong need to gain more insight through analyses of field measurements in different estuaries.

Special attention is given to the role of turbulence in the aggregation of the fine sediment particles and the ordered structure of the aggregates (primary particles — flocculi — flocs — aggregates). It is shown that the properties of the suspended aggregates are significantly determined by the turbulence in the water in a narrow zone near the bed. The sediment particles are in a continuous process of aggregation and breakup. This quasi-equilibrium is shown to be influenced especially by the history of the aggregated particles in the flow system. The dimensions of the finest turbulent eddies are of great importance. The analogy for these processes in laboratory experiments and natural estuaries is demonstrated.

Finally, a review is given of settling velocities of fine sediment flocs and aggregates in estuaries and the instruments to measure them directly in nature. Special attention is given to the relatively rapid decrease in turbidity observed at slack water, resulting in a discrepancy between the settling velocities measured by in situ instruments and those derived from developments in concentration profiles. The chapter concludes with recommendations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alldredge AL (1976) Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol Oceanogr 21(1):14–23

    Article  Google Scholar 

  • Alldredge AL (1979) The chemical composition of macroscopic aggregation in two neretic seas. Limnol Oceanogr 24(5):855–866

    Article  Google Scholar 

  • Allen GP, Salmon JC, Bassoulet P, Penhoat Y Du, Grandpré C De (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90

    Article  Google Scholar 

  • Allersma E (1980) Mud in estuaries and along coasts. Proc Int Symp River Sediment, Beijing, China, pp 663–685 and pp 1285–1289 (additional remarks on the collection of data)

    Google Scholar 

  • Amos CL, Mosher DC (1985) Erosion and deposition of fine-grained sediments from the Bay of Fundy. Sedimentology 32:815–832

    Article  Google Scholar 

  • Anonymous (1982) Slibtransport in de Oosterschelde. Driemaandelijkes Berichten Deltawerken 101: (in Dutch with English abstract: “Mud transport in the Eastern Scheldt”)

    Google Scholar 

  • Argaman Y, Kaufman WJ (1970) Turbulence and flocculation. J Sanit Eng Div Proc Am Soc Civ Eng 96:223–241

    Google Scholar 

  • Bale AJ, Morris AW (1987) In situ measurement of particle size in estuarine waters. Estuarine Coastal Shelf Sci 24:253–263

    Article  Google Scholar 

  • Bale AJ, Morris AW, Howland RJM (1984) Size distributions of suspended material in the surface waters of an estuary as measured by laser Fraunhofer diffraction. In: Parker WR, Kinsman DJJ (eds) Transfer processes in cohesive sediment systems. Plenum, New York, pp 75–85

    Google Scholar 

  • Burt TN (1986) Field settling velocities of estuary muds. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Lecture notes on coastal and estuarine studies, Vol 14. Spinger, Berlin Heidelberg New York, pp 126–150

    Google Scholar 

  • Busch PL, Stumm W (1968) Chemical interactions in the aggregation of bacteria: Bioflocculation in waste treatment. Environ Sci Technol 2:49–53

    Article  Google Scholar 

  • Camp TR, Stein PC (1943) Velocity gradients and internal work in fluid motion. J Boston Soc Civ Eng XXX:219–237

    Google Scholar 

  • Canter Cremers JJ (1921) Eenige bschouwingen over de waterbeweging en de beweging van vaste stof-fen in benedenrivieren, getoestst aan uitkomsten van waarnemingen en aan de uitwerking van uitgevoerde verbeteringswerken in den Waterweg van Rotterdam naar Zee. De Ingenieur 36:741–761

    Google Scholar 

  • Chase RRP (1979) Settling behaviour of natural aquatic particulates. Limnol Oceanogr 24(3):417–426

    Article  Google Scholar 

  • Davesne M, Lepetit JP (1980) Dynamics of silt in estuary: residual currents or flocculation, which prevails? 17th Int Conf on Coastal Engineering Sydney, pp 338–339

    Google Scholar 

  • Deinema MH, Zevenhuizen LPTM (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Microbiol 78:42–57

    Article  Google Scholar 

  • Dobereiner C, McManus J (1983) Turbidity maximum migration and harbor siltation in the Tay Estuary. Am J Fish Aquat Sci Suppl 40:117–129

    Article  Google Scholar 

  • Drake DE (1976) Suspended sediment transport and mud deposition on continental shelves. In: Stanley DJ, Swift DJP (eds) Marine sediment transport and environmental management. Wiley, New York, pp 127–158

    Google Scholar 

  • Edzwald JK, Upchurch JB, O’Melia CR (1974) Coagulation in estuaries. Environ Sci Technol 8(l):58–63

    Article  Google Scholar 

  • Einstein HA, Krone RB (1962) Experiments to determine modes of cohesive sediment transport in salt water. J Geophys Res 67:1451–1464

    Article  Google Scholar 

  • Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Neth J Sea Res 20(2/3):183–199

    Article  Google Scholar 

  • Eisma D, Kalf J (1980) The formation of small particles and aggregates in the Rhine estuary. Neth J Sea Res 14 (2):171–191

    Article  Google Scholar 

  • Eisma D, Cadee GC, Laane R, Kalf J (1982) Preliminary results of AURELIA and NAVICULA cruises in the Rhine and Ems estuaries, January-February 1982. Mitt Geol Paläont Inst Univ Hamburg, SCOPE/UNEP Sonderb 52:633–654

    Google Scholar 

  • Eisma D, Boon J, Groenewegen R, Ittekot V, Kalf J, Mook WG (1983) Observations on macro-aggregates, particle size and organic composition of suspended matter in the Ems estuary. Mitt Geol Paläont Inst Univ Hamburg, SCOPE/ENEP Sonderb 55:295–314

    Google Scholar 

  • Faas RW (1984) Time and density-dependent properties of fluid mud suspensions. NE Brazilian Continental Shelf. Geo Mar Lett 4:147–152

    Article  Google Scholar 

  • Festa JF, Hansen DV (1978) Turbidity maxima in partially mixed estuaries: a two-dimensional numerical model. Estuarine Coastal Mar Sci 7:347–359

    Article  Google Scholar 

  • Firth BA, Hunter RJ (1976) Flow properties of coagulated colloidal suspensions. J Coll Interf Sci 57:248–275

    Article  Google Scholar 

  • Fitch EB (1957) The significance of detention in sedimentation. Sewage Ind Wastes 29(10):1123–1133

    Google Scholar 

  • Fox DL, Coe WR (1943) Biology of the California sea mussel (Mytilus Californius) II. Nutrition, metabolism, growth and calcium deposition. J Exp Zool 93:205–249

    Article  Google Scholar 

  • Francois RJ (1985) Studie van de uitvlokking van kaolinietsuspensies met behulp van aluminium-sulfaat Ph D Thesis. University of Leuven, Belgium (K.U.L.) (in Dutch; “Study of the coagulation and flocculation of kaolinite suspensions with aluminium sulfate”), 339 pp

    Google Scholar 

  • Francois RJ, Haute AA van (1985) Structure of hydroxide flocs. Water Res 19(10):1249–1254

    Article  Google Scholar 

  • Friedlander SK (1977) Smoke, dust and haze. Fundamentals of aerosol behavior. Wiley, New York, 317 pp

    Google Scholar 

  • Gibbs RJ (1977) Clay mineral aggregation in the marine environment. J Sed Petrol 47:237–243

    Google Scholar 

  • Gibbs RJ (1981) Floc breakage by pumps. J Sed Petrol 51:670–672

    Google Scholar 

  • Gibbs RJ (1982a) Floc stability during Coulter Counter Analysis. J Sediment Petrol 52:657–670

    Google Scholar 

  • Gibbs RJ (1982b) Floc breakage during HIAC light-blocking analysis. Environ Sci Technol 16:298–299

    Article  Google Scholar 

  • Gibbs RJ (1983) Effect of natural organic coatings on the coagulation of particles. Environ Sci Technol 17:237–240

    Article  Google Scholar 

  • Gibbs RJ (1985) Estuarine flocs: their size, settling velocity and density. J Geophys Res 90 (C2):3249–3251

    Article  Google Scholar 

  • Gibbs JR, Konwar LN (1982) Effect of pipetting on mineral flocs. Environ Sci Technol 16L:119–121

    Article  Google Scholar 

  • Gibbs RJ, Konwar LN (1983) Sampling of mineral flocs using Niskin bottles. Environ Sci Technol 17:374–375

    Article  Google Scholar 

  • Gibbs RJ, Konwar L, Terchunian A (1983) Size of flocs suspended in Delaware Bay. Can J Fish Aquat Sci 40 (Suppl No 1):102–104

    Article  Google Scholar 

  • Glasgow LA, Pollock RJ, Barkley WA (1983) Particle size reduction by breakage in biological wastewater treatment. Biotechnol Bioeng XXV:901–918

    Article  Google Scholar 

  • Gregory J (1978) Effects of polymers on colloid stability. In: Ives KJ (ed) The scientific basis of flocculation. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, pp 89–99

    Google Scholar 

  • Gust G (1976) Observations on turbulent-drag reduction in a dilute suspension of clay in sea-water. J Fluid Mech 75(l):27–47

    Google Scholar 

  • Hamner WM, Madin LP, Alldredge AL, Silmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20(6):907–917

    Article  Google Scholar 

  • Haven DS, Morales-Alamo R (1968) Occurrence and transport of faecal pellets in suspension in a tidal estuary. Sediment Geol 2:141–151

    Article  Google Scholar 

  • Haven DS, Morales-Alamo R (1972) Biodeposition as a factor in sedimentation of fine suspended solids in estuaries. In: Nelson BW (ed) Environmental framework of coastal plain estuaries. Geol Soc Am Mem 133:121–130

    Google Scholar 

  • Hawley N (1982) Settling velocity distribution of natural aggregates. J Geophys Res 87(C12):9489–9498

    Article  Google Scholar 

  • Head PC (1976) Organic processes in estuaries, Chap 3. In: Burton JD, Liss (eds) Estuarine chemistry. Academic Press, London, pp 54–91

    Google Scholar 

  • Healy TW, Mer VK La (1962) The adsorption-flocculation reactions of a polymer with an aqueous colloidal dispersion. J Phys Chem 66:1835–1838

    Article  Google Scholar 

  • Honjo S, Doherty KW, Agrawal YC, Asper VL (1984) Direct optical assessment of large amorphous aggregates (marine snow) in the deep ocean. Deep-Sea Res 31(l):67–76

    Article  Google Scholar 

  • Hunt JR (1980) Prediction of oceanic particle size distributions from coagulation and sedimentation mechanisms. In: Kavanaugh MC, Leckie JO (eds) Particulates in water. American Chemical Society. Adv Chem Ser 189:243–257

    Article  Google Scholar 

  • Hunt JR (1982) Self-similar particle size distributions during coagulation: theory and experimental verification. J Fluid Mech 122:169–185

    Article  Google Scholar 

  • Hunt JR (1986) Particle aggregate breakup by fluid shear. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Springer, Berlin Heidelberg New York, pp 85–109

    Chapter  Google Scholar 

  • Hunter KA (1980) Microelectrophoretic properties of natural surface-active organic matter in coastal seawater. Limnol Oceanogr 25(5):807–822

    Article  Google Scholar 

  • Hunter KA, Liss PS (1982) Organic matter and the surface charge of suspended particles in estuarine waters. Limnol Oceanogr 27(2):322–335

    Article  Google Scholar 

  • Hunter RJ (1982) The flow behaviour of coagulated colloidal dispersions. Adv Coll Interf Sci 17:197–211

    Article  Google Scholar 

  • Ives KJ (1978) Rate theories. In: Ives KJ (ed) The scientific basis of flocculation. Nato Advanced Study Institutes Series, Series E: Applied Science No 27. Sijthoff & Noordhoff, Alphen aan de Rijn, The Netherlands, pp 37–61

    Google Scholar 

  • Jørgensen CB (1966) Biology of suspension feeding. Pergamon, New York, 357 pp

    Google Scholar 

  • Kajihara M (1971) Settling velocity and porosity of large suspended particles. J Oceanogr Soc Jpn 27(4):158–162

    Article  Google Scholar 

  • Kawana K, Tanimoto T (1976) Temporal variation of suspended matter near the sea bottom in Hiro Bay. Mer (Tokyo) 14:47–52

    Google Scholar 

  • Kawana K, Tanimoto T (1979) Suspended particles near the bottom in Osaka Bay. J Oceanogr Soc Jpn 35:75–81

    Article  Google Scholar 

  • Kitchener JA (1972) Principles of action on polymeric flocculants. Br Polym 4:217–229

    Article  Google Scholar 

  • Knauer GA, Hebel D, Cipriano F (1982) Marine snow: major site of primary production in coastal waters. Nature 300:630–631

    Article  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS, 30:301; Dissipation of energy in locally isotropic turbulence. C R Acad Sci URSS 32:16

    Google Scholar 

  • Komar PD, Morse AP, Small LF, Fowler SW (1981) An analysis of sinking rates of natural copepod and emphausiid fecal pellets. Limnol Oceanogr 26(1):172–180

    Article  Google Scholar 

  • Kranck K (1979) Dynamics and distribution of suspended particulate matter in the St. Lawrence estuary. Naturaliste Can 106:163–173

    Google Scholar 

  • Kranck K (1981) Particulate matter grain-size characteristics and flocculation in a partially mixed estuary. Sedimentology 28:107–114

    Article  Google Scholar 

  • Kranck K, Milligan TG (1980) Macroflocs: production of marine snow in the laboratory. Mar Ecol Prog Ser 3:19–24

    Article  Google Scholar 

  • Kranck K, Milligan TG (1985) Origin of grain size spectra of suspension deposited sediment. Geo Mar Lett 5:61–66

    Article  Google Scholar 

  • Krone RB (1962) Flume studies of the transport of sediment in estuarial shoaling processes. Final Report. Hydraulic Engr Lab Sanitary Engr Res Lab, Univ of California, Berkeley, 110 pp

    Google Scholar 

  • Krone RB (1963) A study of rheologic properties of estuarial sediments. Techn Bull 7, Committee of Tidal Hydraulics, US Army Corps of Engr. WES, Vicksburg, 91 pp

    Google Scholar 

  • Krone RB (1972) A field survey of flocculation as a factor in estuarial shoaling processes. Techn Bull 19, Committee on Tidal Hydraulics, US Army Corps of Engineers, 62 pp

    Google Scholar 

  • Krone RB (1978) Aggregation of suspended particles in estuaries. In: Kjerfve B (ed) Estuaries transport processes. Univ of South Carolina Press, Columbia, SC:171–190

    Google Scholar 

  • Krone RB (1986) The significance of aggregate properties to transport processes. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Lecture notes on costal and estuarine studies no 14. Springer, Berlin Heidelberg New York, pp 66–84

    Chapter  Google Scholar 

  • Kruijt HR (ed) (1952) Colloid science, Vol I. Irreversible systems. Elsevier, Amsterdam, 389 pp

    Google Scholar 

  • Kühl H, Mann H (1953) Über die Hydrochemie der unteren Ems. Veröff Inst Meeresforsch Bremerhaven 3:126–158

    Google Scholar 

  • Laane RWPM (1983) Characteristics of the organic matter in the Wadden Sea. Proceedings of the 4th International Wadden Sea Symposium “The Role of Organic Matter in the Wadden Sea”. Neth J Sea Res 10:23–39

    Google Scholar 

  • Lagvankar AL, Gemmel RS (1968) A size-density relationship for flocs. J Am Water Works Assoc 60(9):1040–1046

    Google Scholar 

  • Leussen W Van (1986) Laboratory experiments on the settling velocity of mud flocs. In: Wang SY, Shen HW, Ding LZ (eds) Proceedings of the Third Int Symp on River Sedimentation, School of Engineering, Univ of Mississippi, pp 1803–1812

    Google Scholar 

  • Leussen W Van (1987) Aggregation of particles, settling velocity of mud flocs — a review. Cohesive Sediment Research Report No. 21. Rijkswaterstaat and Delft Hydraulics, The Netherlands, 80 pp

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, New York, 700 pp

    Google Scholar 

  • Linley EAS, Field JG (1982) The nature and ecological significance of bacterial aggregation in a near-shore upwelling ecosystem. Estuarine Coastal Shelf Sci 14:1–11

    Article  Google Scholar 

  • Loeb GI, Neihof RA (1977) Adsorption of an organic film at the platinum-seawater interface. J Mar Res 35(2):283–291

    Google Scholar 

  • Lumley JL (1969) Drag reduction of additives. Ann Rev Fluid Mech 1:367–383

    Article  Google Scholar 

  • Lund EJ (1957) A quantitative study of clearance of a turbid medium and feeding by the oyster. Univ Texas Inst Marine Sci Pub 4(2):296–312

    Google Scholar 

  • Lüneburg H (1939) Beiträge zur Hydrography der Wesermündung. Veröff Inst Meeresforsch Bremerhaven 1:91–114

    Google Scholar 

  • Magara Y, Nambu S, Utosawa K (1976) Biochemical and physical properties of an activated sludge on settling characteristics. Water Res 10:71–77

    Article  Google Scholar 

  • Markofsky M, Lang G, Schubert R (1986) Suspended sediment transport in rivers and estuaries. In: Kreeke J van de (ed) Physics of shallow estuaries and bays. Lecture notes on coastal and estuarine studies, Vol 16. Springer, Berlin Heidelberg New York, pp 210–227

    Google Scholar 

  • McCave IN (1970) Deposition of fine-grained suspended sediment from tidal currents. J Geophys Res 75(2):4151–4159

    Article  Google Scholar 

  • McCave IN (1984) Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res 31(4):329–352

    Article  Google Scholar 

  • McCave IN (1984) Erosion, transport and deposition of fine-grained marine sediments. In: Stow DAV, Piper DJW (eds) Fine-grained sediments: deep water processes and facies. Geol Soc Lond, Spec Publ No 15. Blackwell, Oxford, pp 35–69

    Google Scholar 

  • McCave IN, Swift SA (1976) A physical model for the rate of deposition of fine-grained sediments in the deep sea. Geol Soc Am Bull 87:541–546

    Article  Google Scholar 

  • McDowell DN, O’Connor BA (1977) Hydraulic behaviour of estuaries. MacMillan, London, 292 pp

    Google Scholar 

  • McLaughlin RT (1961) Settling properties of suspensions. Trans Am Soc Civ Eng 126:1734–1767

    Google Scholar 

  • Meade RH (1969) Landward transportation of bottom sediments in estuaries of the Atlantic coastal plain. J Sediment Petrol 39:222–234

    Google Scholar 

  • Meade RH (1972) Transport and deposition of sediments in estuaries. In: Nelson BW (ed) Environmental framework of coastal plain estuaries. Geol Soc Am Memoir 133, Boulder CO:91–120

    Google Scholar 

  • Mehta AJ (1986) Characterization of cohesive sediment properties and transport processes in estuaries. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Lect Notes Coastal Estuarine Stud 14:290–325

    Article  Google Scholar 

  • Mehta AJ (1988) Laboratory studies on cohesive sediment deposition and erosion. Proc Int Symp “Physical Processes in Estuaries” (this Vol)

    Google Scholar 

  • Mehta AJ, Partheniades E (1975) An investigation of the depositional properties of flocculated fine sediments. J Hydrol Res 13(4):361–381

    Article  Google Scholar 

  • Mehta AJ, Partheniades E (1979) Kaolinite resuspension properties. Tech Note J Hydrol Div, Proc Am Soc Civ Eng 104(HY4):409–416

    Google Scholar 

  • Mer VK La, Healy TW (1963) Adsorption-flocculation reactions of macromoleeules at the solid-liquid interface. Rev Pure Appl Chem 13:112–132

    Google Scholar 

  • Michaels AS (1954) Aggregation of suspensions by polyelectrolytes. Ind Engl Chem 46:1485–1490

    Article  Google Scholar 

  • Michaels AS, Bolger JC (1962a) Settling rates and sediment volumes of flocculated kaoline suspensions. Ind Eng Chem Fund 1:24–33

    Article  Google Scholar 

  • Michaels AS, Bolger JC (1962b) The plastic flow behaviour of flocculated kaolin suspensions. Ind Eng Chem Fund 1:153–162

    Article  Google Scholar 

  • Migniot C (1968) Etude des propiétés physiques de différents sediments très fins et de leur comportement sous des actions hydrodynamiques. La Houille Blanche 7:591–620

    Article  Google Scholar 

  • Migniot C (1977) Action des courants, de la houle et du vent sur les sédiments. La Houille Blanche 1:9–47

    Article  Google Scholar 

  • Mitchell JK (1976) Fundamentals of soil behavior. Wiley, New York, 422 pp

    Google Scholar 

  • Nakagawa H, Nezu I (1975) Turbulence of open channel flow over smooth and rough beds. Proc Jpn Soc Civ Eng 241:155–168

    Article  Google Scholar 

  • NEDECO (1965) A study of the siltation of the Bangkok Port Channel, Vol II: The field investigation. Netherlands Engineering Consultants, The Hague, Holland, 474 pp

    Google Scholar 

  • Neihof RA, Loeb GI (1972) The surface charge of particulate matter in seawater. Limnol Oceanogr 17(1):7–16

    Article  Google Scholar 

  • Neihof RA, Loeb GI (1974) Dissolved organic matter in seawater and the electric charge of immersed surfaces. J Mar Res 32:5–12

    Google Scholar 

  • Nichols MM (1986) Fluid mud accumulation processes in an estuary. Geo Mar Lett 4:171–176

    Article  Google Scholar 

  • Nishizawa SM, Fukuda M, Inoue H (1954) Photographic study of suspended matter and plankton in the sea. Bull Fac Fish Hokkaido Univ 5:36–40

    Google Scholar 

  • O’Melia CR (1972) Coagulation and flocculation. In: Weber WJ (ed) Physical chemical processes for water quality control, Chap 2. Wiley, New York, pp 61–109

    Google Scholar 

  • O’Melia CR (1978) Coagulation in wastewater treatment. In: Ives KJ (ed) The scientific basis of flocculation. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands, pp 219–268

    Google Scholar 

  • Olphen H van (1977) An introduction to clay colloid chemistry. For clay technologists, geologists, and soil scientists, 2nd ed. Wiley, New York, 318 pp

    Google Scholar 

  • Owen MW (1970) A detailed study of the settling velocities of an estuary mud. Hydraulics Res Rep No INT 78

    Google Scholar 

  • Owen MW (1971) The effect of turbulence on the settling velocities of silt flocs. Proc 14th Congress of IAHR Paris 4:D4-1–D4-5

    Google Scholar 

  • Owen MW (1976) Determination of the settling velocities of cohesive muds. Hydraulics Res Rep No IT 161

    Google Scholar 

  • Pandya JP, Spielman CA (1983) Floc breakage in agitated suspensions, Effect of agitation rate. Chem Eng Sci 38(12):1983–1992

    Article  Google Scholar 

  • Parker DS, Kaufman WJ, Jenkins D (1970) Characteristics of biological flocs in turbulent regimes. SERL Report NO 70-5. Sanitary Engineering Research Laboratory. College of Engineering and School of Public Health, Berkeley, 156 pp

    Google Scholar 

  • Parker DS, Kaufman WJ, Jenkins D (1972) Floc break-up in turbulent flocculation process. J San Eng Div Proc Am Soc Civ Eng 98:79–99

    Google Scholar 

  • Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydrol Div Proc Am Soc Civ Eng 91 (HY 1):105–139

    Google Scholar 

  • Partheniades E (1986) The present state of knowledge and needs for future research on cohesive sediment dynamics. In: Wang SY, Shen HW, Ding LZ (eds) Proceedings of the Third Int Symp on River Sedimentation, School of Engineering Univ of Mississippi, pp 3–25

    Google Scholar 

  • Pavoni JL, Tenney MW, Echelberger WF (1972) Bacterial exocellular polymers and biological flocculation. J Water Pollut Control Fed 44:414–431

    Google Scholar 

  • Pierce TJ, Williams DJ (1966) Experiments on certain aspects of sedimentation of estuarial muds. Proc Inst Civ Eng 34:391–402

    Article  Google Scholar 

  • Postma H (1960) Einige Bemerkungen über den Sinkstofftransport im Ems-Dollard-Gebiet. Verh Kd Ned Geol Mijnb Genoot Geol Ser 19:103–110

    Google Scholar 

  • Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth J Sea Res 1:148–190

    Article  Google Scholar 

  • Postma H (1967) Sediment transport and sedimentation in the marine environment. In: Lauff GH (ed) Estuaries Assoc Am Sci Publ 83, Washington DC, pp 158–179

    Google Scholar 

  • Postma H (1980) Sediment transport and sedimentation. In: Olausson E, Cato I (eds) Chemistry and biogeochemistry of estuaries. Wiley, New York, pp 153–186

    Google Scholar 

  • Postma H, Kalle H (1954) Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe. Dtsch Hydrogr Z 8:137–144

    Article  Google Scholar 

  • Puls W, Kuehl H (1986) Field measurements of the settling velocities of estuarine flocs. In: Wang SY, Shen HW, Ding LZ (eds) Proc Third Int Symp on River Sedimentation, School of Engineering, Univ of Mississippi, pp 525–536

    Google Scholar 

  • Puls W, Kuehl H, Heymann K (1988) Settling velocity of mud flocs: results of field measurements in the Elbe and the Weser estuary. Proc Int Symp Physical Processes in Estuaries. Springer, Berlin Heidelberg New York (this volume)

    Google Scholar 

  • Richardson JF, Zaki WN (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3:65–73

    Article  Google Scholar 

  • Rÿn LC van, Nienhuis LEA (1985) In situ determination of fall velocity of suspended sediment. Proc 21st Congress of IAHR, Melbourne, Australia 4:144–148

    Google Scholar 

  • Riley GA (1963) Organic aggregates in seawater and the dynamics of their formation and utilization. Limnol Oceanogr 8:372–381

    Article  Google Scholar 

  • Riley GA (1970) Particulate organic matter in sea water. Adv Mar Biol 8:1–110

    Article  Google Scholar 

  • Ruehrwein RA, Ward DW (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73:485–492

    Article  Google Scholar 

  • Santema P (1953) Coagulatie van rivierslib bij ontmoeting met zeewater. De Ingenieur 16: B70–72 (in Dutch with English summary: “Coagulation of riversilt when meeting seawater”)

    Google Scholar 

  • Schiller L (1932) Fallversuche mit Kugeln und Scheiben. In: Handbuch der Experimental-Physik, Vol IV/2. Akademische Gesellschaft, Leipzig, pp 339–387

    Google Scholar 

  • Schubel JR, Kana TW (1972) Agglomeration of fine-grained suspended sediment in northern Chesapeake Bay. Power Tech 6:9–16

    Article  Google Scholar 

  • Schubel JR, Wilson RE, Okubo A (1978) Vertical transport of suspended sediment in upper Chesapeake Bay. In: Kjerfve B (ed) Estuarine transport processes. Univ of South Carolina Press, Columbia, SC:161–175

    Google Scholar 

  • Shanks AL, Trent JD (1980) Marine snow: sinking rates and potential role in vertical flux. Deep Sea Res 27A:137–143

    Google Scholar 

  • Susuki N, Kato K (1953) Studies on suspended materials. Marine snow in the sea. I. Sources of marine snow. Bull Fac Fish, Hokkaido Univ 4:132–135

    Google Scholar 

  • Tambo N, Hozumi H (1979) Physical characteristics of flocs — II. Strength of flocs. Water Res 13:409–419

    Article  Google Scholar 

  • Tambo N, Watanabe Y (1979) Physical characteristics of flocs — I. The density function and aluminium floc. Water Res 13(5):409–419

    Article  Google Scholar 

  • Thomas DG (1964) Turbulent disruption of floews in small paricle size suspensions. Am Inst Chem Eng J 10(4):517–523

    Google Scholar 

  • Thorn MFC (1981) Physical processes of siltation in tidal channels. Proc Hydraulic Modelling Applied to Maritime Engineering Problems, ICE, London, pp 47–55

    Google Scholar 

  • Thorn MFC, Parsons JG (1980) Erosion and cohesive sediments in estuaries: an engineering guide. Proc Third International Symposium on Dredging Technology, Bordeaux, 5–7 March 1980:349–358

    Google Scholar 

  • Tomi DT, Bagster DF (1978) The behaviour of aggregates in stirred vessels. Trans I Chem E 56:1–18

    Google Scholar 

  • Tomi DT, Bagster DF (1980) The behaviour of aggregates in stirred vessels. Miner Sci Eng 12(1):3–19

    Google Scholar 

  • Trent JD, Shanks AL, Silver MW (1978) In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California. Limnol Oceanogr 23(4):626–636

    Article  Google Scholar 

  • Uiterwijk Winkel APB (1975) Microbiologische aspecten en het sedimentatiegedrag van rivierslib. Rijkswaterstaat, Direktie Waterhuishouding en Waterbeweging, District Zuidwest, report no 44.006.01, 60 pp

    Google Scholar 

  • Ven TG van de, Hunter RJ (1977) The energy dissipation in sheared coagulated sols. Rheol Acta 16:534–543

    Article  Google Scholar 

  • Verreet G, Berlamont J (1987) Rheology and non-Newtonian behaviour of sea and estuarine mud. Encyclopedia of fluid mechanics, vol III. Rheology of Non-Newtonian Flows (in press)

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. The interaction of soil particles having an electric double layer. Elsevier, Amsterdam

    Google Scholar 

  • Verwey J (1952) On the ecology of distribution of cockle and mussel in the Dutch Waddensea, their role in sedimentation and the source of their food, with a short review of the feeding behavior of bivalve molluscs. Arch Neerl Zool 10:172–239

    Google Scholar 

  • Whitehouse UG, Jeffrey LM, Debbrecht JD (1960) Differential settling tendencies of clay minerals in saline waters. In: Swineford A (ed) Clays and clay minerals, 7th, Washington DC, 1958. Pergamon Press, New York, pp 1–79

    Google Scholar 

  • Williams DJA (1986) Rheology of cohesive suspensions. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Lecture notes on coastal and estuarine studies, vol 14. Springer, Berlin Heidelberg New York, pp 110–125

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Leussen, W. (1988). Aggregation of Particles, Settling Velocity of Mud Flocs A Review. In: Dronkers, J., van Leussen, W. (eds) Physical Processes in Estuaries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73691-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73691-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73693-3

  • Online ISBN: 978-3-642-73691-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics