Skip to main content

Abstract

Biological effects of low intensity microwaves have been the subject of a great number of studies and many different reactions were reported ranging from molecular to animal level. The acceptance level is low, however, due to difficulties both in reproducing the effects by others and in demonstrating their real athermal nature. In some cases great efforts were put into repeating athermal experiments, without clear results. In these studies the interpretation of data assumes a statistical behaviour which possibly is not adequate to the biological system (Kaiser 1984). These problems will probably remain as long as the mechanisms of these subtle effects are unknown. It seems worth thinking of new concepts for experimental investigations in athermal bioelectromagnetics. To focus on fundamental mechanisms, experiments must be oriented strongly by theoretical concepts rather than by simply investigating, for instance, biological reactions induced by a fixed frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berteaud AJ, Dardalhon M, Rebeyrotte N, Averbeck D (1975) Action d’un rayonnement électromagnétique à longueur d’onde millimétrique sur la croissance bactérienne. CR Acad Sci (D) (Paris) 281: 843–846

    Google Scholar 

  • Blackman CF, Benane SG, Weil CM, Ali JS (1975) Effects of nonionizing electromagnetic radiation on single cell biologic systems. Ann NY Acad Sci 247: 352–366

    Article  ADS  Google Scholar 

  • Dardalhon M, Averbeck D, Berteaud AJ (1981) Studies on possible genetic effects of microwaves in procaryotic and eucaryotic cells. Radiat Environ Biophys 20: 37–51

    Article  Google Scholar 

  • Dardalhon M, Averbeck D, Berteaud AJ, Rayary V (1986) Action of 17 GHz microwaves combined with ultraviolet or x-irradiation on Saccharomyces cerevisiae. Thesis ( D.M. ), Univ Paris, pp 132–156

    Google Scholar 

  • Devyatkov ND (ed) (1981) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow (in Russian)

    Google Scholar 

  • Devyatkov ND (ed) (1983) Nonthermal effects of millimeter wave irradiation on biological objects. Acad Sci USSR, Inst Radiotech Electrotech Moscow (in Russian)

    Google Scholar 

  • Devyatkov ND, Sevastyanova LA, Vilenskaya RL,Smolyanskaya AZ, Kondrateva YF,Chistyakova EN, Shmakova IF, Ivanova NB, Treskunov AA, Manoilov SE, Zalyubovskaya VA, Koselev RJ, Gaiduk VI, Khurgin YI, Kudryashova VA (1974) Sov Phys-Usp 16, 4: 568–579

    Article  ADS  Google Scholar 

  • Dutta SK, Nelson WH, Blackman CF, Brusick DJ (1979) Lack of microbial genetic response to 2.45 GHz (CW) and 8.5 to 9.6 GHz pulsed microwaves. J Microwave Power 14: 275–280

    Google Scholar 

  • Fröhlich H (1968) Long range coherence and energy storage in biological systems. Int J Quantum Chem 2: 641

    Article  ADS  Google Scholar 

  • Fröhlich H (1970) Long range coherence and the action of enzymes. Nature 228: 1093

    Article  ADS  Google Scholar 

  • Fröhlich H (1980) In: Marton L (ed) Advances in electronics and electron physics. Academic Press, New York, 53: 85–152

    Google Scholar 

  • Fröhlich H (1986) Coherent excitation in active biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 241–261

    Chapter  Google Scholar 

  • Fröhlich H, Kremer F (1983) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Furia L, Hill DW, Gandhi OP (1986) Effect of millimeter-wave irradiation on growth of Caccharomyces cerevisiae. IEEE Trans Biomed Eng Vol BME-33, 11: 993–999

    Article  Google Scholar 

  • Grundler W (1983) Biological effects of RF and MW energy at molecular and cellular level. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum, New York, pp 299–318

    Google Scholar 

  • Grundler W (1985) Frequency-dependent biological effects of low intensity microwaves. In: Chiabrera A, Nicolini C, Schwan HP (eds) Interactions between electromagnetic fields and cells. Plenum, New York, pp 459–481

    Google Scholar 

  • Grundler W, Abmayr W (1983) Differential inactivation analysis of diploid yeast exposed to radiation of various LET. Res 94: 464–479

    Google Scholar 

  • Grundler W, Keilmann F (1978) Nonthermal effects of millimeter microwaves on yeast growth. Z Naturforsch 33c: 15–22

    Google Scholar 

  • Grundler W, Keilmann F (1983) Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves. Phys Rev Lett 51, No 13: 1214–1216

    Article  ADS  Google Scholar 

  • Grundier W, Keilmann F, Fröhlich H (1977) Resonant growth rate response of yeast cells irradiated by weak microwaves. Phys Lett 62A: 463

    Article  Google Scholar 

  • Grundler W, Keilmann F, Putterlik V, Santo L, Strube D, Zimmermann I (1983) Nonthermal resonant effects of 42 GHz microwaves on the growth of yeast cultures. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 21–37

    Chapter  Google Scholar 

  • Hamnerius Y, Rasmuson A, Rasmuson B (1985) Biological effects of high-frequency electromagnetic fields on Salmonella typhimurium and Drosophila melanogaster. Bioelectromagnetics 6: 405–414

    Article  Google Scholar 

  • Huang AT, Engle ME, Elder JA, Kinn JB, Ward TR (1977) The effect of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci 12: 173–177

    Article  ADS  Google Scholar 

  • Kaiser F (1984) Entrainment-quasiperiodicity-chaos-collapse, bifurcation routes of externally driven self-sustained oscillating systems. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 393–412

    Chapter  Google Scholar 

  • Keilmann F (1983) Experimental RF and MW resonant nonthermal effects. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum, New York, pp 283–297

    Google Scholar 

  • Keilmann F (1985) Biologische Resonanzwirkungen von Mikrowellen. Physik in unserer Zeit 16: 33

    Article  ADS  Google Scholar 

  • Keilmann F (1986) Triplet-selective chemistry: a possible cause of biological microwave sensitivity. Z Naturforsch 41c: 795–798

    Google Scholar 

  • Laskowski W (1960) Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. Z Naturforsch Teil B 15: 495

    Google Scholar 

  • McRee DI, Macnichols G, Livingston GK (1981) Incidence of sister chromatic exchange in bone marrow cells of the mouse following microwave exposure. Radiat Res 85: 340–348

    Article  Google Scholar 

  • Pickard WF (1986) Criteria for the design or selection of experiments in bioelectromagnetics. Bioelectromagnetics Society Newsletter Jan., Febr., March

    Google Scholar 

  • Sevastyanova LA (1981) Specific influence of millimeter waves on biological objects. In: Devyatkov ND (ed) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow, pp 86–113 (in Russian)

    Google Scholar 

  • Sevastyanova LA, Vilenskaya RL (1974) A study of the effects of millimeter-band microwaves on the bone marrow of mice. Sov Phys Usp (Engl Trans!) 16: 570

    Article  ADS  Google Scholar 

  • Sevastyanova LA, Gorodnina ES, Zubenkova MB, Golant TB, Rebrova VL, Iskrickij VL (1983) Resonant influence of millimeter waves on biological systems. In: Devyathov ND (ed) Nonthermal effects of millimeter wave irradiation on biological objects. Acad Sci USSR, Inst Radio- tech Electrotech Moscow, pp 34–47 (in Russian)

    Google Scholar 

  • Smolyanskaya AZ (1981) Influence of electromagnetic waves on microorganisms. In: Devyatkov ND (ed) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow, pp 132–146 (in Russian)

    Google Scholar 

  • Webb SJ, Dodds DD (1968) Inhibition of bacterial cell growth by 136 gc microwaves. Nature (Lond) 218: 374–375

    Article  ADS  Google Scholar 

  • Webb SJ, Booth AD (1969) Absorption of microwaves by microorganisms. Nature (Lond) 222: 1199

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundler, W., Jentzsch, U., Keilmann, F., Putterlik, V. (1988). Resonant Cellular Effects of Low Intensity Microwaves. In: Fröhlich, H. (eds) Biological Coherence and Response to External Stimuli. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73309-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73311-6

  • Online ISBN: 978-3-642-73309-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics