Skip to main content

Part of the book series: NATO ASI Series ((ASIG,volume 8))

Abstract

Further examples of UV-B dependent formation of UV-B screening pigments have been investigated. This active protective mechanism also has been found to be present in the leaf epidermis of various lightgrown vegetables (greenhouse conditions excluding UV-B radiation). Typical action spectra for this kind of positive UV-B effect are interpreted in terms of effectiveness under natural growth conditions’ and also with respect to the role of interaction with longer wavelengths. The importance of photorepair of UV-B damage is demonstrated for two systems, bean leaves and mustard cotyledons. Photorepair phenomena are further characterized and their importance for adaptation to an increased UV-B environment are pointed out. UV-B effects on growth and the hypersensitivity reaction (isoflavonoids, phytoalexins) in bean are discussed both from the viewpoint of damaging and beneficial consequences for the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bakker J, Gommers FJ, Smits L, Fuchs A, de Vries FW (1983) Photoactivation of isoflavonoid phytoalexins: involvement of free radicals. Photochem Photobiol 38:323–330

    Article  CAS  Google Scholar 

  • Bawden FC, Kleczkowski A (1952) Ultraviolet injury to higher plants counteracted by visible light. Nature 169:90–93

    Article  PubMed  CAS  Google Scholar 

  • Beggs CJ, Holmes MG, Jabben M, Schäfer E (1980) Action spectra for inhibition of hypocotyl growth by continuous irradiation in light and dark grown Sinapis alba L. seedlings. Plant Physiol 66:615–618

    Article  PubMed  CAS  Google Scholar 

  • Bridge MA, Klarman WL (1973) Soybean phytoalexin, hydroxyphaseollin induced by ultraviolet radiation. Phytopathology 63:606–609

    Article  CAS  Google Scholar 

  • Caldwell MM (1971) Solar UV irradiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, p 131, ISBN 0-12-282606-X

    Google Scholar 

  • Caldwell MM (1981) Plant response to solar ultraviolet radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, new series, physiological plant ecology I, vol 12A. Springer-Verlag, Berlin Heidelberg New York, p 169, ISBN 3-540-10763-0

    Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: Prospects for UV acclimation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  • Diffey BL (1983) The UV-B content of “UV-A fluorescent lamps” and its erythemal effectiveness in human skin. Physics in Biology and Medicine 28:351–360

    Article  CAS  Google Scholar 

  • Duell-Pfaff N, Wellmann E (1982) Involvement of phytochrome and a blue light photoreceptor in UV-B induced flavonoid synthesis in parsley (Petroselinum hortense Hoffm.) cell suspension cultures. Planta 156:213–217

    Article  CAS  Google Scholar 

  • Egger K, Wollenweber E, Tissot M (1970) Freie Flavonol-Aglykone im Knospensekret von Aesculus Arten. Z Pflanzenphysiol 62:464–466

    CAS  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Ann Rev Biochem 44:147–159

    Article  PubMed  CAS  Google Scholar 

  • Gaba V, Black M (1983) The control of cell growth by light. In: Shropshire W Jr, Mohr H (eds) Encyclopedia of plant physiology, new series, photomorphogenesis vol 16A. Springer-Verlag, Berlin Heidelberg New York, p 385, ISBN 3-540-12143-9.

    Google Scholar 

  • Hadwiger LA, Schwochau ME (1971) Ultraviolet light-induced formation of pisatin and phenylalanine ammonia lyase. Plant Physiol 47:588–590

    Article  PubMed  CAS  Google Scholar 

  • Häcker M, Hartmann KM, Mohr H (1964) Zellteilung und Zellwachstum im Hypokotyl von Lactuca sativa L. unter dem Einfluss des Lichtes. Planta 63:253–268

    Article  Google Scholar 

  • Halliwell B (1974) Superoxide dismutase, catalase, and glutathione peroxidase: Solutions to the problems of living with oxygen. New Phytol 73:1075–1080

    Article  CAS  Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge, ISBN 0-521-22121-8

    Google Scholar 

  • Jagger J (1960) Photoprotection from ultraviolet killing in Escherichia coli B. Radiat Res 13:521–525

    Article  PubMed  CAS  Google Scholar 

  • Jagger J, Wise WC, Stafford RS (1964) Delay in growth and division induced by near UV radiation in E. coli B and its role in photoprotection and liquid holding recovery. Photochem Photobiol 3:11–24

    Article  Google Scholar 

  • Johnson ND (1983) Flavonoid aglycones from Eriodyction californicum resin and their implication for herbivory and UV screening. Biochemical Systematics and Ecology 11:211–215

    Article  CAS  Google Scholar 

  • Lange H, Shropshire Jr W, Mohr H (1971) An analysis of phytochrome mediated anthocyanin synthesis. Plant Physiol 47:649–655

    Article  PubMed  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • McLure JW (1975) Physiology and function of flavonoids. In: Harbone JB, Mabry TJ, Mabry H (eds) The flavonoids. Academic Press, New York, p 970, ISBN 0-412-11960-9

    Google Scholar 

  • Mohr H, Schoser G (1960) Eine mit Xenonbogen austerüstete Interferenzfilter Monohcromatoranlage für kurzwellige sichtbare und langwellige ultraviolette Strahlung. Planta 55:143–152

    Article  CAS  Google Scholar 

  • Moss SH, Smith KC (1981) Membrane damage can be a significant factor in the inactivation of E. coli by near UV radiation. Photochem Photobiol 33:203–210

    Article  PubMed  CAS  Google Scholar 

  • Peak MJ, Peak JG (1982) Single strand breaks induced by Bacillus subtilis DNA by ultraviolet light: action spectrum and properties. Photochem Photobiol 35:675–680

    Article  PubMed  CAS  Google Scholar 

  • Peak MJ, Peak JG (1983) Use of action spectra for identifying molecular targets and mechanisms of action of solar ultraviolet light. Physiol Plant 58:367–372

    Article  CAS  Google Scholar 

  • Peak MJ, Peak JG, Webb RB (1973) Inactivation of transforming deoxyribonucleic acid by ultraviolet light III. Further observations on the effect of 365 nm radiation. Mutation Res 20:143–148

    PubMed  CAS  Google Scholar 

  • Ramabhadran TV, Jagger J (1976) Mechanism of growth delay induced in E. coli by near UV radiation. Proc Natl Acad Sci USA 73:59–63

    Article  PubMed  CAS  Google Scholar 

  • Saito N, Werbin H (1969) Evidence for a DNA photoreactivating enzyme in plants. Photochem Photobiol 9:389–393

    Article  PubMed  CAS  Google Scholar 

  • Schäfer E (1977) Kunstlicht und Pflanzenzucht. In: Albrecht H (ed) Optische Strahlung Quellen. Lexika-Verlag, Grafenau, West Germany, p 249, ISBN 3-88146-112-4

    Google Scholar 

  • Setlow RB (1966) Cyclobutane type pyrimidine dimers in polynucleotides. Science 153:379–386

    Article  PubMed  CAS  Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical approach. Proc Natl Acad Sci USA 71:3363–3366

    Article  PubMed  CAS  Google Scholar 

  • Setlow RB, Setlow JK (1962) Evidence that ultraviolet induced thymine dimers in DNA cause biological damage. Proc Natl Acad Sci USA 48:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Setlow JK, Boling ME, Bollom FJ (1965) The chemical nature of photoreactivable lesions in DNA. Proc Natl Acad Sci USA 53:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Sutherland BM (1981) Photoreactivation. BioScience 31:439–444

    Article  CAS  Google Scholar 

  • Tanada T, Hendricks SB (1953) Photoreversal of ultraviolet effects in soybean leaves. Amer J Bot 40:634–637

    Article  Google Scholar 

  • Tajima K, Sakamoto M, Okuda K, Mukai K, Ishizu K, Sakurai H, Mori H (1983) Reaction of biological phenolic antioxidants with super-oxide generated by a cytochrome P-450 model system. Biochem Biophys Res Commun 115:1002–1008

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Sargent ML, Tuveson RW (1981) Inactivation of normal and mutant Neurospora crassa conidia by visible light and near UV. Role of 1O2, carotenoid composition and sensitizer location. Photochem Photobiol 33:345–349

    Article  Google Scholar 

  • Wellmann E (1971) Phytochrome mediated flavone glycoside synthesis in cell suspension cultures of Petroselinum hortense after preirradiation with ultraviolet light. Planta 101:283–286

    Article  CAS  Google Scholar 

  • Wellmann E (1974) Regulation der Flavonoidbiosynthese durch ultraviolettes Licht und Phytochrom in Zellkulturen und Keimlingen von Petersilie (Petroselinum hortense Hoffm.). Ber Dtsch Bot Ges 87:267–273

    Google Scholar 

  • Wellmann E (1976) Specific ultraviolet effects in plant morphogenesis. Photochem Photobiol 24:659–660

    Article  PubMed  CAS  Google Scholar 

  • Wellmann E (1983) UV radiation in photomorphogenesis. In: Shropshire Jr W, Mohr H (eds) Encyclopedia of plant physiology, new series, photomorphogenesis, vol 16B. Spring er-Verlag, Berlin Heidelberg New York, p 745, ISBN 3-540-10763-0

    Google Scholar 

  • Wellmann E, Schneider-Ziebert Y, Beggs CJ (1984) UV-B inhibition of phytochrome mediated anthocyanin formation in Sinapis alba L. cotyledons. Action spectrum and the role of photoreactivation. Plant Physiol 75:997–1000

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber E, Egger K (1971) Die lipophilen Flavonoide des Knospenols von Populus nigra. Phytochemistry 10:225–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beggs, C.J., Schneider-Ziebert, U., Wellmann, E. (1986). UV-B Radiation and Adaptive Mechanisms in Plants. In: Worrest, R.C., Caldwell, M.M. (eds) Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. NATO ASI Series, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70090-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70090-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70092-7

  • Online ISBN: 978-3-642-70090-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics