Skip to main content

Abstract

Debris flows claim hundreds of lives and cause millions of dollars of property damage throughout the world each year. In Japan alone, an average 90 lives are lost annually from debris flows (Takahashi 1981). In 1970 a debris avalanche (a rapidly moving form of debris flow) triggered by an earthquake, completely destroyed the city of Yungay, Peru, killing an estimated 17,000 people and burying the whole city under 5 m of mud and debris (Plafker and Erickson 1978). Some countries with chronic losses from debris flows include Japan (Okuda et al. 1980); United States (Committee on Methodologies for Predicting Mudflow Areas, 1982; Scott 1972; Cummans 1981; Scott 1971; Flaccus 1958; Williams and Guy 1973; Woolley 1946; Morton and Campbell 1974); Indonesia (Scrivenor 1929); Tanzania (Temple and Rapp 1972); Scandinavia (Rapp and Stromquist 1976); Costa Rica (Waldron 1967); China (Li and Luo 1981; Chinese Society of Hydraulic Engineering 1980); Brazil (Jones 1973); Ireland (Prior et al. 1968); Romania (Balteanu 1976); India (Starkel 1972); Bangladesh (Wasson 1978); New Zealand (Selby 1967; Pierson 1980a, b); and the Soviet Union (Gol’din and Lyubashevskiy 1966; Niyazov and Degovets 1975; Gagoshidze 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Apmann RP (1973) Estimating discharge from superelevation in bends: Hydraul Div Am Soc Civ Eng 99: HY1, 65–79

    Google Scholar 

  • Aramaki S (1956) The 1783 activity of Asama Volcano, part 1. Jpn J Geol Geogr 27 (2–4): 189–229

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc London Ser A 225: 49–63

    Google Scholar 

  • Bagnold RA (1956) Flow of cohesionless grains in fluids. Philos Trans R Soc London Ser A 249: 234–297

    Google Scholar 

  • Balteanu D (1976) Two case studies of mudflows in the Buzau Subcarpathians. Geogr Ann 58 A: 165–171

    Google Scholar 

  • Beaty CB (1963) Origins of alluvial fans, White Mountains, California and Nevada. Ann Assoc Am Geogr 53: 516–535

    Google Scholar 

  • Beaty CB (1970) Age and estimated rate of accumulation of an alluvial fan, White Mountains, California; USA. Am J Sci 268: 50–77

    Google Scholar 

  • Beaty CB (1974) Debris flows, alluvial fans and a revitalized catastrophism Z. Geomorphol 21: 39–51

    Google Scholar 

  • Benson MA, Dalrymple T (1967) General field and office procedures for indirect discharge measurements. US Geol Surv Tech Water Resour-Invest B 3: Chap A-l, 30

    Google Scholar 

  • Beverage JP, Culbertson JK (1964) Hyperconcentrations of suspended sediment. Hydraul Div Am Soc Civ Eng HY6:117–126

    Google Scholar 

  • Bingham EC, Green H (1919) Paint, a plastic material and not a viscous liquid; the measurement of its mobility and yield value. Proc Am Soc Test Mater 19: part II, 640–664

    Google Scholar 

  • Blackwelder E (1928) Mudflow as a geologic agent in semi-arid mountains. Geol Soc Am Bull 39: 465–484

    Google Scholar 

  • Blissenbach E (1954) Geology of alluvial fans in semi-arid regions. Geol Soc Am Bull 65: 175–190

    Google Scholar 

  • Bluck BJ (1964) Sedimentation of an alluvial fan in southern Nevada. J Sediment Petrol 34: 395–400

    Google Scholar 

  • Bolt BA (1978) Earthquakes—a primer. Freeman, San Francisco, 241 p

    Google Scholar 

  • Bolt BA, Horn WL, Macdonald GA, Scott RF (1975) Geological Hazards. Springer, Berlin Heidelberg New York, 328 p

    Google Scholar 

  • Boulton GS (1968) Flow tills and related deposits on some Vestspitsbergen glaciers. J. Glaciol 7: 391–412

    Google Scholar 

  • Broscoe AJ, Thomson S (1969) Observations on an alpine mudflow, Steel Creek, Yukon. Can J Earth Sci 6: 219–229

    Google Scholar 

  • Bull WB (1962) Relation of textural (CM) patterns to depositional environment of alluvial-fan deposits. J Sediment Petrol 32: 211–216

    Google Scholar 

  • Bull WB (1964) Alluvial fans and near-surface subsidence in Western Fresno County, California. US Geol Surv Prof Pap 437-A: 71

    Google Scholar 

  • Bull WB (1977) The alluvial fan environment. Prog Phys Geogr 1: 222–270

    Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann 62 A: 23–27

    Google Scholar 

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. US Geol Surv Prof Pap 851: 51

    Google Scholar 

  • Chawner WD (1935) Alluvial fan flooding: the Montrose, California flood of 1934. Geogr Rev 25: 255–263

    Google Scholar 

  • Chinese Society of Hydraulic Engineering (ed) (1980) Proc Int Symp River Sediment; vol I. Beijing China 325 p

    Google Scholar 

  • Chow VT (1959) Open channel hydraulics. McGraw Hill, New York, 680 p Committee on Methodologies for Predicting Mudflow Areas ( 1982 ) Selecting a methodology for delineating mudslide hazard areas for the national flood insurance program. Natl Res Counc, Natl Acad Press, Washington DC, 35 p

    Google Scholar 

  • Cooley ME, Aldridge BN, Euler RC (1977) Effects of the catastrophic flood of December 1966, north rim area, eastern Grand Canyon, Arizona. US Geol Surv Prof Pap 980: 43

    Google Scholar 

  • Costa JE (1978) The dilemma of flood control in the United States. Environ Manage 2: 313–322

    Google Scholar 

  • Costa JE, Jarrett RD (1981) Debris flows in small mountain stream channels of Colorado and their hydrologic implications. Assoc Eng Geol Bull 18: 309–322

    Google Scholar 

  • Crandell DR (1971) Postglacial lahars from Mount Rainier Volcano, Washington. US Geol Surv Prof Pap 677: 75

    Google Scholar 

  • Crandell DR, Mullineaux DR (1978) Potential hazards from future eruptions of Mount St. Helens Volcano, Washington. US Geol Surv Bull 1383-C: 26

    Google Scholar 

  • Crandell DR, Waldron HH (1969) Volcanic hazards in the Cascade Range. Proc Conf Geol Hazards Public Probi. US Govern Print Off, Washington DC, pp 5–18

    Google Scholar 

  • Cummans J (1981) Mudflows resulting from the May 18, 1980 eruption of Mount St. Helens, Washington. US Geol Surv Circ 850-B: 16

    Google Scholar 

  • Curry RR (1966) Observation of alpine mudflows in the Tenmile Range, Central Colorado. Geol Soc Am Bull 77: 771–776

    Google Scholar 

  • Dalrymple T, Benson MA (1967) Measurement of peak discharges by the slope-area method. US Geol Surv Tech Water-Resour Invest B3: Chap A2, 12

    Google Scholar 

  • Dawdy DR (1979) Flood-frequency estimates on alluvial fans. J Hydraul Div Am Soc Civ Eng HY11: 1407–1413

    Google Scholar 

  • Enos P (1977) Flow regimes in debris flows. Sedimentology 24: 133–142

    Google Scholar 

  • Fei Xiangjun (1981) Bingham yield stress of sediment-water mixture with hyper-concentration. J Sediment Res Chin Soc Hydraul Eng 3: 19–28

    Google Scholar 

  • Fink JH, Malin MC, D’Alli RE, Greeley R (1981) Rheological properties of mudflows associated with the spring 1980 eruptions of Mount St. Helens volcano, Washington. Geophys Res Lett 8 (1): 43–46

    Google Scholar 

  • Fisher RV (1971) Features of coarse-grained, high concentration fluids and their deposits. J Sediment Petrol 41: 916–927

    Google Scholar 

  • Flaccus E (1958) White Mountain Landslides. Appalachia 32: 175–191

    Google Scholar 

  • Follansbee R, Sawyer LR (1948) Floods in Colorado. US Geol Surv Water-Supple Pap 997: 151

    Google Scholar 

  • Gagoshidze MS (1969) Mudflows and floods and their control. Sov Hydrol 4: 410–422

    Google Scholar 

  • Gardner JS (1982) Alpine mass-wasting in contemporary time: some examples from the Canadian Rocky Mountains. In: Thorn CE (ed) Space and Time in Geomorphology. George Allen and Unwin, London, pp 171–192

    Google Scholar 

  • Gilbert GK (1882) Contributions to the history of Lake Bonneville. US Geol Surv 2nd Annu Rep: 167–200

    Google Scholar 

  • Gol’din BM, Lyubashevskiy LS (1966) Computation of the velocity of mudflows for Crimean Rivers. Sov Hydrol 2: 179–181

    Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New York, 513 p

    Google Scholar 

  • Gundlach DL (1977–78) Approaches to “plain” problems. Water Spectrum 10 (1): 33–37

    Google Scholar 

  • Guy HP (1971) Flood flow downstream from slide. Hydraul Div Am Soc Civ Eng 97:HY4, 643–646

    Google Scholar 

  • Hampton MA (1972) The role of subaqueous debris flow in generating turbidity currents. J Sediment Petrol 42: 775–793

    Google Scholar 

  • Hampton MA (1975) Competence of fine-grained debris flows. J Sediment Petrol 45: 834–844

    Google Scholar 

  • Hampton MA (1979) Buoyancy in debris flows. J Sediment Petrol 49: 753–758

    Google Scholar 

  • Hartshorn JH (1958) Flowtill in southeastern Massachusetts. Geol Soc Am Bull 69: 477–482

    Google Scholar 

  • Hollingsworth R, Kovacs GS (1981) Soil slumps and debris flows: prediction and protection. Assoc Eng Geol Bull 18: 17–28

    Google Scholar 

  • Hooke R, Le B (1967) Processes on arid-region alluvial fans. J Geol 75: 438–460

    Google Scholar 

  • Hsu KJ (1975) Catastrophic debris stream (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86: 129–140

    Google Scholar 

  • Hyde JH, Crandell DR (1978) Postglacial volcanic deposits at Mount Baker, Washington, and potential hazards from future eruptions. US Geol Surv Prof Pap 1022-C; 17

    Google Scholar 

  • Hydraulic Division (1971) Hydrology Manual. Hydraul Div LA County Flood Control District, Los Angeles, California

    Google Scholar 

  • Ikeya H, Uehara S (1982) The behavior of debris in S-shape stream channel curves. Mater Civ Eng Tech 24 (12): 21–26 (in Japanese)

    Google Scholar 

  • Iso N, Yamakawa K, Yonezawa H, Matsubara T (1980) Accumulation rates of alluvial cones, constructed by debris-flow deposits, in the drainage basins of the Takahara River, Gifu prefecture, central Japan. Geogr Rev Jpn 53: 699–720

    Google Scholar 

  • Jackson LE (1977) Dating and recurrence frequency of prehistoric mudflows near Big Sur, Monterey County, California. J Res US Geol Surv 5: 17–32

    Google Scholar 

  • Jackson LE (1979) A catastrophic glacial outburst flood (jökulhlaup) mechanism for debris flow generation at the Spiral Tunnels, Kicking Horse River, British Columbia. Can Geotech J 16: 806–813

    Google Scholar 

  • Jahns RH (1949) Desert floods. Eng Sei Mon, Calif Inst Tech, May pp 10–14

    Google Scholar 

  • Janda RJ, Scott KM, Nolan KM, Martinson HA (1981) Lahar movement, effects, and deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 461–478

    Google Scholar 

  • Johnson AM (1970) Physical processes in geology. Freeman and Cooper, San Francisco, 577 p

    Google Scholar 

  • Johnson AM (1979) Field methods for estimating rheological properties of debris flows. Unpub. ms, Dept Geol, Univ of Cincinnati, Cincinnati, OH, 36 p

    Google Scholar 

  • Johnson AM, Rahn PH (1970) Mobilization of debris flows. Z Geomorphol 9: 168–186

    Google Scholar 

  • Jones FO (1973) Landslides of Rio de Janeiro and the Serra das Araras Escarpment, Brazil. US Geol Surv Prof Pap 697: 42

    Google Scholar 

  • Kang Zhicheng, Zhang Shucheng (1980) A preliminary analysis of the characteristics of debris flows. Proc Int Symp River Sediment, vol I, Beijing, China, pp 225–226

    Google Scholar 

  • Kemmerling GLL (1921) De uitbarsting van den G. Keloet in den nacht von den igden op den zosten Mei 1919. Dienst Mijnwezen Vulkanol Meded 2: 120 (in Dutch)

    Google Scholar 

  • Kherkheulidze II (1967) Estimation of basic characteristics of mud flows (“sel”). In: Proc Int Assoc Sei Hydrol Symp Floods Comput, vol II, Leningrad, pp 940–948

    Google Scholar 

  • Kochel RC, Johnson RA, Valastro S (1982) Repeated episodes of Holocene debris avalanching in central Virginia. Geol Soc Am Abstr Programs, 14 (12): 31

    Google Scholar 

  • Krumbein WC (1940) Flood gravel of San Gabriel Canyon, California. Geol Soc Am Bull 51: 639–676

    Google Scholar 

  • Krumbein WC (1942) Flood deposits of Arroyo Seco, Los Angeles County, California. Geol Soc Am Bull 53: 1355–1402

    Google Scholar 

  • Kuenen PH (1951) Properties of turbidity currents of high density. In: Hough JL (ed) Turbidity currents and the transportation of coarse sediments to deep water. Soc Econ Paleontol Mineral Spec Publ 2: 14–33

    Google Scholar 

  • Kurdin RD (1973) Classification of mudflows. Sov Hydrol 4: 310–316

    Google Scholar 

  • LaMarche VC (1968) Rates of slope degradation as determined from botanical evidence, White Mountains, California. US Geol Surv Prof Pap 352–1: 37

    Google Scholar 

  • Lane EW (1940) Notes on limit of sediment concentration. J Sediment Petrol 10: 94–95

    Google Scholar 

  • Lawson AC (1915) The epigene profiles of the desert. Univ Calif Publ Dep Geol Bull 9: 23–48

    Google Scholar 

  • Lawson DE (1982) Mobilization, movement, and deposition of active subaerial sediment flows, Matanuska Glacier, Alaska. J Geol 90: 279–300

    Google Scholar 

  • Li Jian, Luo Defu (1981) The formation and characteristics of mudflow and flood in the mountain area of the Dachao River and its prevention. Z Geomorphol 25: 470–484

    Google Scholar 

  • Li Jian, Yuan Jianmo, Bi Cheng, Luo Defu (1983) The main features of the mudflow in Jiang-Jia Ravine. Z Geomorphol 27: 325–341

    Google Scholar 

  • Lowe DR (1976) Grain flow and grain flow deposits. J Sediment Petrol 46: 188–199

    Google Scholar 

  • Lumb P (1975) Slope failures in Hong Kong. Q J Eng Geol 8: 31–65

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Englewood Cliffs, Prentice-Hall, NJ, 510 p

    Google Scholar 

  • Magura LM, Wood DE (1980) Flood hazard identification and flood plain management on alluvial fans. Water Resour Bull 16: 56–62

    Google Scholar 

  • Matthes GH (1947) Macroturbulence in natural streamflow. Am Geophys Un Trans 28: 255–262

    Google Scholar 

  • McPherson HJ, Hirst F (1972) Sediment changes on two alluvial fans in the Canadian Rocky Mountains. In: Slaymaker, HO, McPherson, JH (eds) Mountain geomorphology. BC Geogr Ser 14: 161–175

    Google Scholar 

  • Mears AJ (1977) Debris-flow hazard analysis and mitigation: an example from Glenwood Springs, Colorado. Colo Geol Surv Inf Ser 8: 45

    Google Scholar 

  • Middleton GY, Hampton MA (1976) Subaqueous sediment transport and depositions by sediment gravity flows. In: Stanley DJ, Swift JP (eds) Marine sediment transport and environmental management. Wiley, New York, pp 197–218

    Google Scholar 

  • Miles MJ, Kellerhals R (1981) Some engineering aspects of debris torrents. Can Soc Civil Engr, 5th Can Hydrotech Conf, New Brunswick, pp 395–420

    Google Scholar 

  • Miller CD (1980) Potential hazards from future eruptions in the vicinity of Mount Shasta Volcano, Northern California. US Geol Surv Bull 1503: 43

    Google Scholar 

  • Mills HH (1982) Piedmont-cove deposits of the Rillwood quadrangle, Great Smoky Mountains, North Carolina, USA. Morphometry. Z Geomorphol 26: 163–178

    Google Scholar 

  • Morton DM, Campbell RH (1974) Spring mudflows at Wrightwood, Southern California. Q J Eng Geol 7: 377–384

    Google Scholar 

  • Mullineaux DR, Crandell DR (1962) Recent lahars from Mount St. Helens, Washington. Geol Soc Am Bull 73: 855–870

    Google Scholar 

  • Nasmith HW, Mercer AG (1979) Design of dykes to protect against debris flows at Port Alice, British Columbia. Can Geotech J 16: 748–757

    Google Scholar 

  • Neall VE (1976) Lahars as major geologic hazards. Bull Int Assoc Eng Geol 14: 233–240

    Google Scholar 

  • Nilsen TH, Taylor FA, Dean RM (1976) Natural conditions that control landsliding in the San Francisco Bay Region—an analysis based on data from the 1968–69 and 1972–73 rainy seasons. US Geol Surv Bull 1424: 35

    Google Scholar 

  • Niyazov BS, Degovets AS (1975) Estimation of the parameters of catastrophic mudflows in the basins of the Lesser and Greater Almatinka Rivers. Sov Hydrol 2: 75–80

    Google Scholar 

  • Nordin CF (1963) A preliminary study of sediment transport parameters Rio Puerco near Bernardo New Mexico. US Geol Surv Prof Pap 462 C: 21 p

    Google Scholar 

  • Okuda S (1978) Observation on the motion of debris flow and its geomorphological effects. Int Geogr Un, Comm Field Exp Geomorphol, Paris, 24 p

    Google Scholar 

  • Okuda S, Suwa H, Okunishi K, Nakano M, Yokoyama K (1977) Synthetic observation on debris flow, part. 3. Observation at Valley Kamikamihorizawa of Mt. Yakedake in 1976. Ann Disaster Prevention Res Inst, Kyoto Univ 20B–1: 237–263

    Google Scholar 

  • Okuda S, Suwa H, Okunishi K, Yokoyama K, Nakano M (1980) Observations on the motion of a debris flow and its geomorphology effects. Z Geomorphol 35: 142–163

    Google Scholar 

  • Oliferov AN (1970) Transport of large rocks by mudflows. Sov Hydrol 2: 121–123

    Google Scholar 

  • O’Shea BE (1954) Ruaphu and the Tangiwai disaster. N Z J Sci Technol Sect B 36: 174–189

    Google Scholar 

  • Pe GG, Piper DJW (1975) Textural recognition of mudflow deposits. Sedimentology 13: 303–306

    Google Scholar 

  • Pierson TC (1977) Factors controlling debris-flow initiation on forested hillslopes in the Oregon Coast Range. Ph D dissertation, Univ Washington, Seattle, 166 p

    Google Scholar 

  • Pierson TC (1980 a) Erosion and deposition by debris flows at Mount TTiomas, North Canterbury, New Zealand. Earth Surface Process 5: 227–247

    Google Scholar 

  • Pierson TC ( 1980 b) Debris flows. Rev 39 J Tussoch Grassl Mt Lands Inst: NZ, December, pp 3–14

    Google Scholar 

  • Pierson TC (1981) Dominate particle support mechanisms in debris flows at Mount Thomas, New Zealand, and implications for flow mobility. Sedimentology 28: 49–60

    Google Scholar 

  • Plafker G, Erickson GE (1978) Navados Huascaran avalanches, Peru. In: Voight B (ed) Rockslides and avalanches, 1. Natural Phenomenon. Elsevier, Amsterdam, pp 277–314

    Google Scholar 

  • Pomeroy JS (1980) Storm-related debris avalanching and related phenomena in the Johnstown area, Pennsylvania, with reference to other studies in the Appalachians. US Geol Surv Prof 1191: 24

    Google Scholar 

  • Prior DB, Stephens N, Archer DR (1968) Composite mudflows on the Antrim Coast of northeast Ireland. Geogr Ann 50 A: 65–78

    Google Scholar 

  • Qian Yiying, Yang Wenhai, Zhao Wenlin, Cheng Xinwen, Zhang Longrong, Xu Wengui (1980) Basic characteristics of flow with hyperconcentration of sediment. Proc Int Symp River Sediment vol I, Beijing, China pp 175–184

    Google Scholar 

  • Rachocki A (1981) Alluvial fans. Wiley, New York, 161 p

    Google Scholar 

  • Rapp A, Nyberg R (1981) Alpine debris flows in northern Scandinavia. Geogr Ann 63 A: 183–196

    Google Scholar 

  • Rapp A, Strömquist L (1976) Slope erosion due to extreme rainfall in the Scandinavian Mountains. Geogr Ann 58 A: 193–200

    Google Scholar 

  • Reiner M (1956) Phenomenological macrorheology. In: Eirich FR (ed) Rheology, theory and applications, vol I. Academic Press, London New York, pp 9–62

    Google Scholar 

  • Reiner M (1960) The rheology of concrete. In: Eirich FR (ed) Rheology: Theory and applications, vol III. Academic Press, London New York, pp 341–364

    Google Scholar 

  • Renwick WH (1977) Erosion caused by intense rainfall in a small catchment in New York State. Geology 5:361–364

    Google Scholar 

  • Rodine JD, Johnson AM (1976) The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes. Sedimentology 23: 213–234

    Google Scholar 

  • Ryder JM (1971 a) The stratigraphy and morphology of paraglacial alluvial fans in south-central British Columbia. Can J Earth Sci 8:279–298

    Google Scholar 

  • Ryder JM (1971 b) Some aspects of the morphometry of paraglacial alluvial fans in south-central British Columbia. Can J Earth Sci 8:1252–1264

    Google Scholar 

  • Scott KM (1971) Origin and Sedimentology of 1969 debris flows near Glendora, California. US Geol Surv Prof Pap 750-C: C242–C247

    Google Scholar 

  • Scott KM, Gravlee GC (1968) Floodsurge on the Rubicon River, California—hydrology, hydraulics, and boulder ransport. US Geol Surv Prof Pap 422-M: 40 p

    Google Scholar 

  • Scott RC (1972) The geomorphic significance of debris avalanching in the Appalachian Blue Ridge Mountains. Unpub PhD disser, Univ. of Georgia, Athens, 185 p

    Google Scholar 

  • Scrivenor JB (1929) The mudstreams (“lahars”) of Gunon Keolet in Java. Geol Mag 66: 433–434

    Google Scholar 

  • Selby MJ (1967) Erosion by high intensity rainstorms in the lower Waikato basin. Earth Sci J N Z 1: 153–156

    Google Scholar 

  • Selby MJ (1974) Dominant geomorphic events in landform evolution. Bull Int Assoc Eng Geol 9: 85–89

    Google Scholar 

  • Sharp RP (1942) Mudflow levees. J Geomorphol 5: 222–227

    Google Scholar 

  • Sharp RP, Nobles LH (1953) Mudflow of 1941 at Wrightwood, Southern California. Geol Soc Am Bull 64: 547–560

    Google Scholar 

  • Simons Li, Associates Inc. (1982) Debris and flood control plan for Portland and Cascade Creeks at Ouray, Colorado. Final Rep City Ouray, Colorado, Colo Water Board, Denver

    Google Scholar 

  • Smith TC, Hart EW (with a contribution by Baldwin JE, Rodrigues RJ (1982) Landslides and related storm damage, January 1982, San Francisco Bay Region. Calif Geol 35: 139–152

    Google Scholar 

  • Sokolovskii DL (1968) Rechnoi stok-osnovy teorii i metodiki, raschetov (River runoff: theory and analysis): Leningrad, 3rd rev edn. Gidrometeor Izd (English translation published by: Isr Program Sci Transí 1971, for US Dep Commerce, 489 p)

    Google Scholar 

  • Starkel L (1972) The role of catastrophic rainfall in the shaping of the relief of the lower Himalaya (Darjeeling Hills). Geogr Pol 21: 103–153

    Google Scholar 

  • Stewart JH, LaMarche VC (1967) Erosion and deposition produced by the flood of December 1964 on Coffee Creek, Trinity County, California. US Geol Surv Prof Pap 422 K: 22 p

    Google Scholar 

  • Syanozhetsky TGU, Beruchashvili GM, Kereselidze NB (1973) Hydraulics of rapid turbulant and quasilaminar (structural) mud-streams in deformed bed with abrupt slopes. Proc Int Assoc Hydraul Res Conf, vol I, Istanbul, pp 507–515

    Google Scholar 

  • Takahashi T (1978) Mechanical characteristics of debris flows. J of the Hydraulics Division, American Society of Civil Engineers, v. 104, no. HY 8, p. 1153–1169

    Google Scholar 

  • Takahashi T (1980) Debris flow on prismatic channel: J of the Hydraulics Division, American Society of Civil Engineers, v. 106, no. HY 3, p 381–396

    Google Scholar 

  • Takahashi T(1981) Debris flows. Annu Rev Fluid Mech 13:57–77

    Google Scholar 

  • Temple PH, Rapp A (1972) Landslides in the Mgeta area, western Uluguru Mountains, Tanzania. Geogr Ann 54 A: 157–193

    Google Scholar 

  • Terzaghi K, Peck RB (1967) Soil mechanics in engineering practice. Wiley, New York, 729 p

    Google Scholar 

  • Trowbridge AC (1911) The terrestrial deposits of Owens Valley, California. J Geol 19: 706–747

    Google Scholar 

  • Vanoni VA (ed) (1975) Sedimentation engineering. Am Soc Civ Eng, Manuals Rep Eng Pract 54: 745 p

    Google Scholar 

  • Vanoni V, Nomicos GN (1960) Resistance properties of sediment-laden streams. Trans Am Soc Civ Eng Pap 3055: 1140–1175

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides analysis and control. Transport Res Board Spec Rep 176. Natl Acad Sci, Washington DC, pp 11–33

    Google Scholar 

  • Vinogradov YB (1969) Some aspects of the formation of mudflows and methods of computing them. Sov Hydrol 5: 480–500

    Google Scholar 

  • Waldron HH (1967) Debris flow and erosion control problems caused by the ash eruptions of Irazu Volcano, Costa Rica. US Geol Surv Bull 1241–1: 1–37

    Google Scholar 

  • Wasson RJ (1978) A debris flow at Reshun, Pakistan, Hindu Kush. Geogr Ann 60 A: 151–159

    Google Scholar 

  • Watanabe M, Ikeya H (1981) Investigation and analysis of volcanic mud flows on Mount Sakurajima, Japan. Erosion sediment transport measurement. Int Assoc Hydrol Sei Publ, 133, Florence, pp 245–256

    Google Scholar 

  • Weltmann RN (1960) Rheology of pastes and paints. In: Eirich FR (ed) Rheology: Theory and applications, vol III. Academic Press, London New York, pp 189–248

    Google Scholar 

  • Wigmosta M, Fairchild LH, Smith JD, Dunne T, Flanagan P (1982) Field evidence for the dynamics of the Toutle River mudflows, May 18, 1980. EOS Trans Am Geophys Un 62 (8): 80

    Google Scholar 

  • Williams GP, Guy HP (1973) Erosional and depositional aspects of Hurricane Camille in Virginia, 1969. US Geol Surv Prof Pap 804: 84 p

    Google Scholar 

  • Wilm HG, Storey HC (1944) Velocity-head rod calibrated for measuring stream flow. Civ Eng 14: 475–476

    Google Scholar 

  • Winder CG (1965) Alluvial-cone construction by alpine mudflow in a humid temperate region. Can J Earth Sci 2: 270–277

    Google Scholar 

  • Woolley RR (1946) Cloudburst floods in Utah 1850–1928. US Geol Surv Water Supply Pap 994: 128 p

    Google Scholar 

  • Yano K, Daido A (1965) Fundamental study on mudflow. Bull Disaster Prevention Res Inst, vol 14. Kyoto Univ, Japan, pp 69–83

    Google Scholar 

  • Youd IL (1973) Liquefaction, flow and associated ground failure. US Geol Surv Circ 688: 12 p

    Google Scholar 

  • Zeu MT, Hadikusumo D (1965) The future danger of Mount Kelut (eastern Java-Indonesia). Bull Volcanol, 28: 275–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, J.E. (1984). Physical Geomorphology of Debris Flows. In: Costa, J.E., Fleisher, P.J. (eds) Developments and Applications of Geomorphology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69759-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69759-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69761-6

  • Online ISBN: 978-3-642-69759-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics