Skip to main content

Ocular Pharmacokinetics

  • Chapter
Pharmacology of the Eye

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 69))

Abstract

Abbreviations. Nearly 100 symbols are used in the mathematical development of kinetic theory in this chapter. The majority of them appear only transiently and are defined where they are used, so that no purpose would be served by listing them here. Most of those that are used more generally are illustrated in Fig. 4 and are listed below, but a few others are neither in the figure nor in accordance with standard convention: owing to other uses for the more common symbols, the thickness of a tissue layer and its area are referred to as q and Q; readers may remember them from the German quer and Quadrat. In place of the abbreviation AUC for area under the curve, the symbol U is used, and specifically U d for the area under the tear concentration curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abel R, Boyle GL (1976) Dissecting ocular tissue for intraocular drug studies. Invest Ophthalmol 15:216–219

    PubMed  Google Scholar 

  • Abel R, Boyle G, Furman M, Leopold IH (1974) Intraocular penetration of cefazolin sodium in rabbits. Am J Ophthalmol 78:779–787

    PubMed  Google Scholar 

  • Abraham R, Burnett H (1955) Tetracycline and chloramphenicol studies on rabbit and human eyes. Arch Ophthalmol 54:641–659

    CAS  Google Scholar 

  • Adler CA, Maurice DM, Paterson ME (1971) The effect of viscosity of the vehicle on the penetration of fluorescein into the human eye. Exp Eye Res 11:34–42

    PubMed  CAS  Google Scholar 

  • Allansmith M, DeRamus A, Maurice D (1979) The dynamics of IgG in the cornea. Invest Ophthalmol Vis Sci 18:947–955

    PubMed  CAS  Google Scholar 

  • Alm A, Bill A, Young FA (1973) The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Exp Eye Res 15:31–36

    PubMed  CAS  Google Scholar 

  • Ambache N (1955) The use and limitations of atropine for pharmacological studies on autonomic effectors. Pharmacol Rev 7:467–494

    PubMed  CAS  Google Scholar 

  • Anderson JA, Davis WL, Wei CP (1980) Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, epinephrine. Invest Ophthalmol Vis Sci 19:817–823

    PubMed  CAS  Google Scholar 

  • Andrews GWS (1947) Distribution of penicillin in the eye after subconjunctival injection. Lancet 6453:594–596

    Google Scholar 

  • Araie M, Sawa M, Nagataki S, Mishima S (1980) Aqueous humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 24:346–362

    Google Scholar 

  • Araie M, Sawa M, Takase M (1981) Effect of topical indomethacin on the blood-aqueous barrier after intracapsular extraction of senile cataract—a fluorophotometric study. Jpn J Ophthalmol 25:237–247

    Google Scholar 

  • Asseff CF, Weisman RL, Podos SM, Becker B (1973) Ocular penetration of pilocarpine in primates. Am J Ophthalmol 75:212–215

    PubMed  CAS  Google Scholar 

  • Axelrod JL, Kochman RS (1978) Cefamandole levels in primary aqueous humor in man. Am J Ophthalmol 85:342–348

    PubMed  CAS  Google Scholar 

  • Axelrod JL, Kochman RS (1980) Cefaclor levels in human aqueous humor. Arch Ophthalmol 98:740–742

    PubMed  CAS  Google Scholar 

  • Azuma I, Abe K, Sakaguchi K (1963) Penetration of steroid hormone into the eye. Acta Soc Ophthalmol Jpn 67:1691–1697

    CAS  Google Scholar 

  • Bárány EH (1976) Organic cation uptake in vitro by the rabbit iris-ciliary body, renal cortex, and choroid plexus. Invest Ophthalmol 15:341–348

    PubMed  Google Scholar 

  • Barza M (1978) Factors affecting the intraocular penetration of antibiotics. Scan J Infect Dis [Suppl] 14:151–159

    CAS  Google Scholar 

  • Barza M (1980) Treatment of bacterial infections of the eye. In: Remington JS, Swartz MM (eds) Current clinical topics in infectious diseases McGraw-Hill, New York, pp 158–193

    Google Scholar 

  • Barza M, Baum J (1973) Penetration of ocular compartments by penicillins. Surv Ophthalmol 18:71–82

    CAS  Google Scholar 

  • Barza M, Baum J, Birkby B, Weinstein L (1973) Intraocular penetration of carbenicillin in the rabbit. Am J Ophthalmol 75:307–313

    PubMed  CAS  Google Scholar 

  • Barza M, Kane A, Baum JL (1977) Regional differences in ocular concentration of genta-micin after subconjunctival and retrobulbar injection in the rabbit. Am J Ophthalmol 83:407–413

    PubMed  CAS  Google Scholar 

  • Barza M, Kane A, Baum J (1978) Intraocular penetration of gentamicin after subconjunctival and retrobulbar injection. Am J Ophthalmol 85:541–547

    PubMed  CAS  Google Scholar 

  • Barza M, Kane A, Baum J (1981) The difficulty of determining the route of intraocular penetration of gentamicin after subconjunctival injection in the rabbit. Invest Ophthalmol Vis Sci 20:509–514

    PubMed  CAS  Google Scholar 

  • Barza M, Kane A, Baum J (1982) The effects of infection and probenecid on the transport of carbenicillin from the rabbit vitreous. Invest Ophthalmol Vis Sci 22:720–726

    PubMed  CAS  Google Scholar 

  • Baum JL, Barza M, Shushan D, Weinstein L (1974) Concentration of gentamicin in experimental corneal ulcers. Arch Ophthalmol 92:315–317

    PubMed  CAS  Google Scholar 

  • Baurmann M (1930) Über das Ciliarfortsatz-Gefäßsystem. Ber Zusammenkunft Dtsch Ophthalmol Ges 48:364–371

    Google Scholar 

  • Beasley H, Boltralik JJ, Baldwin HA (1975) Chloramphenicol in aqueous humor after topical application. Arch Ophthalmol 93:184–185

    PubMed  CAS  Google Scholar 

  • Becker B (1960) The transport of organic anions by the rabbit eye. I. In vitro iodopyracet (Diodrast) accumulation by ciliary body-iris preparations. Am J Ophthalmol 50:862–867

    PubMed  CAS  Google Scholar 

  • Becker B (1961 a) The turnover of bromide in the rabbit eye. Arch Ophthalmol 65:97–99

    Google Scholar 

  • Becker B (1961 b) Iodide transport by the rabbit eye. Am J Ophthalmol 200:804–806

    CAS  Google Scholar 

  • Becker EF (1969) The intraocular penetration of lincomycin. Am J Ophthalmol 67:963–965

    PubMed  CAS  Google Scholar 

  • Bellhorn RW (1980) Permeability of blood-ocular barriers of neonatal and adult cat to sodium fluorescein. Invest Ophthalmol Vis Sci 19:870–877

    PubMed  CAS  Google Scholar 

  • Bellows JG, Farmer CJ (1947) Streptomycin in ophthalmology. Am J Ophthalmol 30:1215–1220

    PubMed  CAS  Google Scholar 

  • Bennett TO, Peyman GA (1974) Use of tobramycin in eradicating experimental bacterial endophthalmitis. Albrecht Von Graefes Arch Klin Exp Ophthalmol 191:93–107

    PubMed  CAS  Google Scholar 

  • Benson H (1974) Permeability of the cornea to topically applied drugs. Arch Ophthalmol 91:313–327

    PubMed  CAS  Google Scholar 

  • Bhattacherjee P (1970) Uptake of3 H-noradrenaline by the ocular tissues of rabbit. Exp Eye Res 9:73–81

    PubMed  CAS  Google Scholar 

  • Bhattacherjee P (1971) Distribution of carbonic anhydrase in the rabbit eye as demonstrated histochemically. Exp Eye Res 12:356–359

    PubMed  CAS  Google Scholar 

  • Bienfang DC (1973) Sector pupillary dilatation with an epinephrine strip. Am J Ophthalmol 75:883–884

    PubMed  CAS  Google Scholar 

  • Bill A (1965) Movement of albumin and dextran through the sclera. Arch Ophthalmol 74:248–252

    PubMed  CAS  Google Scholar 

  • Bill A (1968) Capillary permeability to and extravascular dynamics of myoglobin, albumin and gammaglobulin in the uvea. Acta Physiol Scand 73:511–522

    PubMed  CAS  Google Scholar 

  • Bill A (1971) Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops) Exp Eye Res 11:195–206

    PubMed  CAS  Google Scholar 

  • Bill A, Phillips CI (1971) Uveoscleral drainage of aqueous humor in human eyes. Exp Eye Res 12:275–281

    PubMed  CAS  Google Scholar 

  • Bito LZ, De Rousseau CJ (1980) Transport functions of the blood-retinal barrier system and the micro-environment of the retina. In: Cunha-Vaz JG (ed) The blood-retinal barriers, Nato advanced study institutes series, vol 32. Plenum, New York, pp 133–163

    Google Scholar 

  • Bito LZ, Klein EM (1981) The unique sensitivity of the rabbit eye to x-ray-induced ocular inflammation. Exp Eye Res 33:403–412

    PubMed  CAS  Google Scholar 

  • Bito LZ, Salvador EV (1972) Intraocular fluid dynamics. III. The site and mechanism of prostaglandin transfer across the blood intraocular fluid barriers. Exp Eye Res 14:233–241

    PubMed  CAS  Google Scholar 

  • Bleeker GM, Maas EH (1955) The penetration of Aureomycin, Terramycin, and chloramphenicol in the ocular tissues. Ophthalmologica 130:1–8

    PubMed  CAS  Google Scholar 

  • Bleeker GM, Maas EH (1958) Penetration of penethamate, a penicillin ester, into the tissues of the eye. Arch Ophthalmol 60:1013–1020

    CAS  Google Scholar 

  • Bleeker GM, van Haeringen NJ, Glasius E (1968 a) Urea and the vitreous barrier of the eye. Exp Eye Res 7:30–36

    PubMed  CAS  Google Scholar 

  • Bleeker GM, van Haeringen NJ, Maas ER, Glasius E (1968 b) Selective properties of the vitreous barrier. Exp Eye Res 7:37–46

    PubMed  CAS  Google Scholar 

  • Bloom JN, Levene RZ, Thomas G, Kimura R (1976) Fluorophotometry and the rate of aqueous flow in man. Instrumentation and normal values. Arch Ophthalmol 94:435–443

    PubMed  CAS  Google Scholar 

  • Bloome M, Golden B, McKee A (1970) Antibiotic concentration in ocular tissues. Penicillin G and dihydrostreptomycin. Arch Ophthalmol 83:78–83

    PubMed  CAS  Google Scholar 

  • Bloomfield SE, Miyata T, Dunn MW, Bueser N, Stenzel KH, Rubin AL (1978) Soluble gentamicin ophthalmic inserts as a drug delivery system. Arch Ophthalmol 96:885–887

    PubMed  CAS  Google Scholar 

  • Boberg-Ans J, Grove-Rasmussen KV, Hammarlund ER (1959) Buffering technique for obtaining increased physiological response from alkaloidal eye-drops. Br J Ophthalmol 43:670–675

    PubMed  CAS  Google Scholar 

  • Boyle GL, Hein HF, Leopold IH (1970) Intraocular penetration of cephalexin in man. Am J Ophthalmol 69:868–872

    PubMed  CAS  Google Scholar 

  • Boyle GL, Lichtig ML, Leopold IH (1971) Lincomycin levels in human ocular fluids and serum following subconjunctival injection. Am J Ophthalmol 71:1303–1306

    PubMed  CAS  Google Scholar 

  • Boyle GL, Gwon AE, Zinn KM, Leopold IH (1972 a) Intraocular penetration of carbenicil- lin after subconjunctival injection in man. Am J Ophthalmol 73:754–759

    PubMed  CAS  Google Scholar 

  • Boyle GL, Abel R Jr, Lazachek GW, Leopold IH (1972 b) Intraocular penetration of sodium cephalothin in man after subconjunctival injection. Am J Ophthalmol 74:868–874

    PubMed  CAS  Google Scholar 

  • Bron AJ, Richards AB, Knight-Jones D, Easty DL, Ainslie D (1970) Systemic absorption of Soframycin after subconjunctival injection. Br J Ophthalmol 54:615–620

    PubMed  CAS  Google Scholar 

  • Broughton W, Goldman J (1973) The intraocular penetration of chloramphenicol succinate in rabbits. Ann Ophthalmol 5:71–80

    PubMed  CAS  Google Scholar 

  • Burns-Bellhorn MS, Bellhorn RW, Benjamin JV (1978) Anterior segment permeability to fluorescein-labeled dextrans in the rat. Invest Ophthalmol Vis Sci 17:857–866

    PubMed  CAS  Google Scholar 

  • Burstein (1980) Cytotoxicity of topically applied drugs, vehicles and preservatives. Surv Ophthalmol 24:15–30

    Google Scholar 

  • Camras CB, Bito LZ (1980) The pathophysiological effects of nitrogen mustard on the rabbit eye. Exp Eye Res 30:41–52

    PubMed  CAS  Google Scholar 

  • Castrén JA, Raitta C, Laamanen A (1964) Über das Eindringen eines Depot-corticosteroids in die Vorderkammer und den Glaskörper, und die Verweildauer des Steroids im Auge. Acta Ophthalmol (Copenh) 42:680–684

    Google Scholar 

  • Chen SC, Nakamura H, Tamura Z (1980) Studies on the metabolites of fluorescein in rabbit and human urine. Chem Pharm Bull (Tokyo) 28:1403–1407

    CAS  Google Scholar 

  • Chrai SS, Robinson JR (1974) Corneal permeation of topical pilocarpine nitrate in the rabbit. Am J Ophthalmol 77:735–739

    PubMed  CAS  Google Scholar 

  • Chrai SS, Patton TF, Mehta A, Robinson JR (1973) Lacrimal and instilled fluid dynamics in rabbit eyes. J Pharm Sci 62:1112–1121

    PubMed  CAS  Google Scholar 

  • Coakes RL, Brubaker RF (1979) Method of measuring aqueous humor flow and corneal endothelial permeability using a fluorophotometry nomogram. Invest Ophthalmol Vis Sci 18:288–302

    PubMed  CAS  Google Scholar 

  • Cobo LM, Forster RK (1981) The clearance of intravitral gentamicin. Am J Ophthalmol 92:59–62

    PubMed  CAS  Google Scholar 

  • Cogan D, Hirsch E (1944) The cornea: VII. Permeability to weak electrolytes. Arch Ophthalmol 32:276–282

    CAS  Google Scholar 

  • Cole DF (1974) The site of breakdown of the blood-aqueous barrier under the influence of vaso-dilator drugs. Exp Eye Res 19:591–607

    PubMed  CAS  Google Scholar 

  • Cole DF, Monro PAG (1976) The use of fluorescein-labelled dextrans in investigation of aqueous humour outflow in the rabbit. Exp Eye Res 34:571–585

    Google Scholar 

  • Coles RS, Boyle GL, Leopold IH (1971) Lincomycin levels in rabbit ocular fluids and serum. Am J Ophthalmol 72:464–467

    PubMed  CAS  Google Scholar 

  • Conrad JM, Robinson JR (1980) Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci 69:875–884

    PubMed  CAS  Google Scholar 

  • Conrad JM, Reay WA, Polcyn E, Robinson JR (1978) Influence of tonicity and pH on lac-rimation and ocular drug bioavailability. J Parenter Drug Assoc 32:149–161

    PubMed  CAS  Google Scholar 

  • Cox W, Kupferman A, Leibowitz H (1972) Topically applied steroids in corneal disease. I. The role of inflammation in stromal absorption of dexamethasone. Arch Ophthalmol 88:308

    PubMed  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon, Oxford

    Google Scholar 

  • Cunha-Vaz JG (1979) Sites and function of the blood-retinal barriers. In: Cunha-Vaz JG (ed) The blood-retinal barriers. Plenum, New York, pp 101–117

    Google Scholar 

  • Cunha-Vaz JG, Maurice DM (1967) The active transport of fluorescein by the retinal vessels and the retina. J Physiol 191:467–486

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz JG, Maurice DM (1969) Fluorescein dynamics in the eye. Doc Ophthalmol 26:61–72

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz JG, Shakib M, Ashton N (1966) Studies on the permeability of the blood-retinal barrier. I. On the existence, development and site of a blood-retinal barrier. Br J Ophthalmol 50:441–453

    PubMed  CAS  Google Scholar 

  • Curry SH (1977) Drug disposition and pharmacokinetics: with a consideration of pharmacological and clinical relationships, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Daily MJ, Peyman GA, Fishman G (1973) Intravitreal injection of methicillin for treatment of endophthalmitis. Am J Ophthalmol 76:343–350

    PubMed  CAS  Google Scholar 

  • Davson H (1969) The intraocular fluids. In: Davson H (ed) The eye. Academic, New York, pp 67–186

    Google Scholar 

  • Davson H, Duke-Elder WS, Maurice DM, Ross EJ, Woodin AM (1949) The penetration of some electrolytes and non-electrolytes into the aqueous humor and vitreous body of the cat. J Physiol 108:203–217

    CAS  Google Scholar 

  • Dernouchamps JP, Heremans JF (1975) Molecular sieve effect of the blood-aqueous barrier. Exp Eye Res 31:289–297

    Google Scholar 

  • Dikstein S, Maurice DM (1972) The metabolic basis to the fluid pump in the cornea. J Physiol 221:29–41

    PubMed  CAS  Google Scholar 

  • Doane MG, Jensen AD, Dohlman CH (1978) Penetration routes of topically applied eye medications. Am J Ophthalmol 85:383–386

    PubMed  CAS  Google Scholar 

  • Dorey C, Faure JP (1977) Isolement et charactérisation partielle d’un antigène rétinien responsable de l’uvéo-rétinite autoimmune expérimentale. Ann Immunol (Inst Pasteur) 128C–229–232

    Google Scholar 

  • Duguid JP, Ginsberg M, Fraser IC, Macaskill J, Michaelson I, Robson JM (1947) Experimental observations on the intravitreous use of penicillin and other drugs. Br J Ophthalmol 31:193–211

    Google Scholar 

  • Duke-Elder S, Maurice DM (1957) Symbols of ocular dynamics. Br J Ophthalmol 41:702–703

    PubMed  CAS  Google Scholar 

  • Ehlers N (1965 a) The precorneal film. Biomicroscopical, histological and chemical investigations. Acta Ophthalmol [Suppl] (Copenh) 81:1–136

    Google Scholar 

  • Ehlers N (1965 b) On the size of the conjunctival sac. Acta Ophthalmol (Copenh) 43:205–210

    Google Scholar 

  • Ellerhorst B, Golden B, Nabil J (1975) Ocular penetration of topically applied gentamicin. Arch Ophthalmol 93:371–379

    Google Scholar 

  • Ellis P, Littlejohn K, Deitrich R (1972) Enzymatic hydrolysis of pilocarpine. Invest Ophthalmol 11:747–751

    PubMed  CAS  Google Scholar 

  • Ellison SA, Jacobson M, Levine MJ (1981) Lacrimal and salivary proteins. In: Suran A, Gery I, Nussenblatt RB (eds) Proceeding immunology of the eye; workshop III. Immunology Abstracts [Suppl]

    Google Scholar 

  • Fajardo RV (1966) Subconjunctival injection of methyl-prednisolone. Phillipine J Surg 21:119–122

    CAS  Google Scholar 

  • Faris BM, Uwaydah MM (1974) Intraocular penetration of semisynthetic penicillins. Arch Ophthalmol 92:501–505

    PubMed  CAS  Google Scholar 

  • Faris BM, Fahd S, Khuri G, Kuraydiyyah I, Uwaydah M (1980) Intraocular penetration of sisomicin in rabbits. Arch Ophthalmol 98:2050–2052

    PubMed  CAS  Google Scholar 

  • Flynn GL, Yalkowsky SN (1972) Correlation and prediction of mass transport across membranes. I: Influence of alkyl chain length on flux-determining properties of barrier and diffusant. J Pharm Sci 61:838–852

    PubMed  CAS  Google Scholar 

  • Forbes M, Becker B (1960) The transport of organic anions by the rabbit eye. II. In vivo transport of iodopyracet (Diodrast) Am J Ophthalmol 50:867–873

    PubMed  CAS  Google Scholar 

  • Friedenwald JS, Becker B (1955) Aqueous humor dynamics. Theoretical considerations. Arch Ophthalmol 54:799–815

    CAS  Google Scholar 

  • Furgiuele FP (1967) Ocular penetration and tolerance of gentamicin. Arch Ophthalmol 64:421–426

    CAS  Google Scholar 

  • Furgiuele FP (1970) Penetration of gentamicin into the aqueous humor of human eyes. Am J Ophthalmol 69:481–483

    PubMed  CAS  Google Scholar 

  • Furgiuele FP, Sery TW, Leopold IH (1960) Newer antibiotics: their intraocular penetration. Am J Ophthalmol 50:614–622

    PubMed  CAS  Google Scholar 

  • Furgiuele FP, Smith JP, Baron JG (1978) Tobramycin levels in human eyes. Am J Ophthalmol 85:121–123

    PubMed  CAS  Google Scholar 

  • Furukawa RE, Poise KA (1978) Changes in tear flow accompanying aging. Am J Optom Physiol Opt 55:69–74

    PubMed  CAS  Google Scholar 

  • Gager WE, Elsas FJ, Smith JL (1969) Ocular penetration of cephalexin in the rabbit. Br J Ophthalmol 53:403–406

    PubMed  CAS  Google Scholar 

  • Gardiner PA, Michaelson IC, Rees RJW, Robson JM (1948) Intravitreous streptomycin: its toxicity and diffusion. Br J Ophthalmol 32:449–456

    CAS  Google Scholar 

  • Gerlough TD (1931) The influence of pH on the activity of certain local anesthetics as measured by the rabbit’s cornea methods. J Pharmacol Exp Ther 41:307–316

    CAS  Google Scholar 

  • Gladtke E, von Hattingberg HM (1979) Pharmacokinetics: an introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Godbey REW, Green K, Hull DS (1979) Influence of cetylpyridinium chloride on corneal permeability to penicillin. J Pharm Sci 68:1176–1179

    PubMed  CAS  Google Scholar 

  • Goldberg M (1979) Diseases affecting the inner blood-retinal barrier. In: Cunha-Vaz JG (ed) The blood retinal barriers, NATO advanced study institutes series. Plenum, New York, pp 309–363

    Google Scholar 

  • Golden B, Coppel SP (1970) Ocular tissue absorption of gentamicin Arch Ophthalmol 84:792–796

    PubMed  CAS  Google Scholar 

  • Goldman NJ, Klein JO (1970) Penetration of ampicillin and penicillin G into the aqueous humor. Ann Ophthalmol 2:35–42

    CAS  Google Scholar 

  • Goldman JN, Broughton W, Javed H, Lauderdale V (1973) Ampicillin, erythromycin and chloramphenicol penetration into rabbit aqueous humor. Ann Ophthalmol 5:147–156

    PubMed  CAS  Google Scholar 

  • Goldmann H (1951) Abflußdruck, Minutenvolumen und Widerstand der Kammerwasserströmung des Menschen. Doc Ophthalmol 5:278–356

    PubMed  Google Scholar 

  • Goldstein AM, de Palau A, Botelho SY (1967) Inhibition and facilitation of pilocarpine-induced lacrimal flow by norepinephrine. Invest Ophthalmol 6:498–511

    PubMed  CAS  Google Scholar 

  • Goodenough DA (1979) Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci 18:1104–1122

    PubMed  CAS  Google Scholar 

  • Graham RO, Peyman GA (1974) Intravitreal injection of dexamethasone. Arch Ophthalmol 92:149–154

    PubMed  CAS  Google Scholar 

  • Grant S (1981) Probenecid and intraocular methicillin. Ann Ophthalmol 13:209–211

    PubMed  CAS  Google Scholar 

  • Grayson MC, Laties AM (1971) Ocular localization of sodium fluorescein. Arch Ophthalmol 85:600–609

    PubMed  CAS  Google Scholar 

  • Green K, MacKeen DL (1976) Chloramphenicol retention on and penetration into the rabbit eye. Invest Ophthalmol 15:220–222

    PubMed  CAS  Google Scholar 

  • Green WR, Bennet JE, Goos RD (1965) Ocular penetration of amphotericin B. Arch Ophthalmol 73:769–775

    PubMed  CAS  Google Scholar 

  • Gregersen W (1958) The tissue spaces in the human iris and their communication with the anterior chamber by way of the iridic crypts. Acta Ophthalmol 36:819–828

    Google Scholar 

  • Hale PN, Maurice DM (1969) Sugar transport across the corneal endothelium. Exp Eye Res 8:205–215

    PubMed  CAS  Google Scholar 

  • Hamard H, Schmitt C, Plazonnet B, Le Douarec JS (1975) Étude de la pénétration oculaire de la dexamethasone. In: DeMailly P, Hamard H, Luton JP (eds) Oeil et cortisone. Masson and Cie, Paris, pp 3–81

    Google Scholar 

  • Hamashige S, Potts AM (1955) The penetration of cortisone and hydrocortisone into the ocular structures. Am J Ophthalmol 90:211–216

    Google Scholar 

  • Hansch C, Clayton JM (1973) Lipophilic character and biological activity of drugs II. The parabolic case. J Pharm Sci 62:1–21

    PubMed  CAS  Google Scholar 

  • Hardberger RE, Hanna C, Goodart R (1975) Effects of drug vehicles on ocular uptake of tetracycline. Am J Ophthalmol 80:133–138

    PubMed  CAS  Google Scholar 

  • Hayashi H (1966) Penetration of kanamycin into tissues of rabbit eye. III Comparison with streptomycin. Acta Soc Ophthalmol Jpn 70:632–641

    CAS  Google Scholar 

  • Hillman JS, Jacobs SI, Garnett AJ, Kheskani MB (1979) Gentamicin penetration and decay in the human aqueous. Br J Ophthalmol 63:794–796

    PubMed  CAS  Google Scholar 

  • Hind HW, Goyan FM (1947) A new concept of the role of hydrogen ion concentration and buffer systems in the preparation of ophthalmic solutions. J Am Pharm Assoc 36:33–40

    CAS  Google Scholar 

  • Hirsch M, Renard G, Faure JP, Pouliquen Y (1978) Endothelial cell junctions in the ciliary body microvasculature. A freeze-fracture study in the rabbit. Albrecht Von Graefes Arch Klin Exp Ophthalmol 208:69–76

    PubMed  CAS  Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

    Google Scholar 

  • Holly FJ, Lamberts DW (1981) Effect of nonisotonic solutions on tear film osmolality. Invest Ophthalmol Vis Sci 20:236–245

    PubMed  CAS  Google Scholar 

  • Holm O (1968) A photogrammetric method for estimation of the pupillary aqueous flow in the living human eye. Acta Ophthalmol 46:254–283

    CAS  Google Scholar 

  • Holm O, Krakau CET (1966) Measurements of the flow of aqueous humor according to a new principle. Experientia 22:773

    Google Scholar 

  • Honegger H (1961) Beitrag zur Frage der Permeationsgeschwindigkeit und Wirkungsdauer von Augensalben am Beispiel des gelösten und kristallinen Chloramphenikol. Klin Mo-natsbl Augenheilkd 139:38–44

    CAS  Google Scholar 

  • Hull DS, Hine JE, Edelhauser HF, Hyndiuk RA (1974a) Permeability of the isolated rabbit cornea to corticosteroids. Invest Ophthalmol 13:457–459

    PubMed  CAS  Google Scholar 

  • Hull DS, Edelhauser HF, Hyndiuk RA (1974 b) Ocular penetration of prednisolone and the hydrophilic contact lens. Arch Ophthalmol 92:413–416

    PubMed  CAS  Google Scholar 

  • Iwata S (1973) Chemical composition of the aqueous phase. In: Holly F (ed) International ophthalmology clinics, vol 13. Little, Brown, Boston, pp 29–46

    Google Scholar 

  • Jain MR, Batra V (1979) Steroid penetration in human aqueous with “Sauflon 70” lenses. Indian J Ophthalmol 11:26–31

    Google Scholar 

  • Jain MR, Srivastava S (1978) Ocular penetration of hydrocortisone and dexamethasone into the aqueous humor after subconjunctival injection. Trans Opthalmol Soc UK 98:63–65

    CAS  Google Scholar 

  • Jampol LM, Neufeld AH, Sears ML (1975) Pathways for the response of the eye to injury. Invest Ophthalmol 14:184–189

    PubMed  CAS  Google Scholar 

  • Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5:208–220

    PubMed  CAS  Google Scholar 

  • Kahan IL, Papai I, Hammer H (1974) Intraocular penetration of tri-tetracyclines after parenteral and subconjunctival administration. Albrecht Von Graefes Arch Klin Exp Ophthalmol 190:257–265

    PubMed  CAS  Google Scholar 

  • Kaiser RJ, Maurice DM (1964) The diffusion of fluorescein in the lens. Exp Eye Res 3:156–165

    PubMed  CAS  Google Scholar 

  • Kane A, Barza M, Baum J (1981) Intravitreal injection of gentamicin in rabbits. Effect of inflammation and pigmentation on half-life and ocular distribution. Invest Ophthalmol Vis Sci 20:593–597

    PubMed  CAS  Google Scholar 

  • Kasbeer RT, Peyman GA, May DR, Homer PI (1975) Penetration of amicacin into the aphakic eye. Albrecht Von Graefes Arch Klin Exp Ophthalmol 196:85–94

    PubMed  CAS  Google Scholar 

  • Keller N, Moore D, Carper D, Longwell A (1980) Increased corneal permeability induced by the dual effects of transient tear film acidification and exposure to benzalkonium chloride. Exp Eye Res 30:203–210

    PubMed  CAS  Google Scholar 

  • Kinsey VE (1960) Ion movement in the eye. Circulation 21:968–987

    PubMed  CAS  Google Scholar 

  • Kinsey VE, Palm E (1955) Posterior and anterior chamber aqueous humor formation. Arch Ophthalmol 53:330–344

    CAS  Google Scholar 

  • Kinsey VE, Reddy DVN (1959) An estimate of the ionic composition of the fluid secreted into the posterior chamber, inferred from a study of aqueous humor dynamics. Doc Ophthalmol 13:7–40

    PubMed  Google Scholar 

  • Kinsey VE, Reddy DVN (1964) Chemistry and dynamics of aqueous humor. In: Prince JH (ed) The rabbit in eye research. Thomas, Springfield, pp 1–102

    Google Scholar 

  • Kirisawa N (1954) Chemotherapy in ophthalmology. Acta Soc Ophthalmol Jpn 58: 1237–1255

    Google Scholar 

  • Kishida K, Otori T (1980) A quantitative study on the relationship between transcorneal permeability of drugs and their hydrophobicity. Jpn J Ophthalmol 24:251–259

    CAS  Google Scholar 

  • Kleinberg J, Dea FJ, Anderson JA, Leopold IH (1979) Intraocular penetration of topically applied lincomycin hydrochloride in rabbits. Arch Ophthalmol 97:933–936

    PubMed  CAS  Google Scholar 

  • Klyce SD (1972) Electrical profiles in the corneal epithelium. J Physiol 226:407–429

    PubMed  CAS  Google Scholar 

  • Klyce SD (1975) Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Am J Physiol 228:1446–1452

    PubMed  CAS  Google Scholar 

  • Knothe H, Moog E, Vogel F, Fabricius K (1970) Konzentrationsabläufe des Tetracyclins im Kammerwasser des Menschen nach systemischer Verabreichung. Klin Monatsbl Au-genheilkd 156:843–850

    CAS  Google Scholar 

  • Kramer SG (1976) Retinal uptake of topical epinephrine in aphakia. In: Leopold IH, Burns RP (eds) Symposium on ocular therapy. Wiley, New York, pp 73–86

    Google Scholar 

  • Kramer SG, Potts AM (1969) Iris uptake of catecholamines in experimental Horner’s syndrome. Am J Ophthalmol 67:705–713

    PubMed  CAS  Google Scholar 

  • Kramer SG, Potts AM, Mangnall Y (1972) Autoradiographic localization of catecholamines in the uveal tract. Am J Ophthalmol 74:129–134

    PubMed  CAS  Google Scholar 

  • Krohn DL (1978) Flux of topical pilocarpine to the human aqueous. Trans Am Soc Ophthalmol 76:502–527

    CAS  Google Scholar 

  • Krupin T, Waltman SR, Becker B (1974) Ocular penetration in rabbits of topically applied dexamethasone. Arch Ophthalmol 92:312–314

    PubMed  CAS  Google Scholar 

  • Krupin T, Cross DA, Becker B (1977) Decreased basal tear production associated with general anesthesia. Arch Ophthalmol 95:107–108

    PubMed  CAS  Google Scholar 

  • Kuming BS, Tonkin M (1974) Use of gentamicin sulphate in ophthalmology. I. Absorption of gentamicin into the rabbit aqueous. Br J Ophthalmol 58:609–612

    PubMed  CAS  Google Scholar 

  • Kupferman A, Leibowitz HM (1974 a) Topically applied steroids in corneal disease. IV. The role of drug concentration in stromal absorption of prednisolone acetate. Arch Ophthalmol 91:377–380

    PubMed  CAS  Google Scholar 

  • Kupferman A, Leibowitz H (1974 b) Topically applied steroids in corneal disease. V. Dexamethasone alcohol. Arch Ophthalmol 92:329–330

    PubMed  CAS  Google Scholar 

  • Kupferman A, Leibowitz H (1974c) Topically applied steroids in corneal disease. VI. Kinetics of prednisolone sodium phosphate. Arch Ophthalmol 92:331–334

    PubMed  CAS  Google Scholar 

  • Kupferman A, Leibowitz HM (1975) Penetration of fluorometholone into the cornea and aqueous humor. Arch Ophthalmol 93:425–427

    PubMed  CAS  Google Scholar 

  • Kupferman A, Leibowitz HM (1976) Biological equivalence of ophthalmic prednisolone acetate suspensions. Am J Ophthalmol 182:109–113

    Google Scholar 

  • Kupferman A, Pratt MV, Suckewer K, Leibowitz HM (1974) Topically applied steroids in corneal disease III. The role of drug derivative in stromal absorption of dexamethasone. Arch Ophthalmol 91:373–376

    PubMed  CAS  Google Scholar 

  • Kurose Y, Leopold I (1965) Intraocular penetration of ampicillin. I. Animal experiment. Arch Ophthalmol 73:361–365

    PubMed  CAS  Google Scholar 

  • Kurose Y, Sery TW, Leopold IH (1964) Intraocular penetration of thiosporin. Am J Ophthalmol 57:418–426

    PubMed  CAS  Google Scholar 

  • Kurose Y, Levy PM, Leopold IH (1965) Intraocular penetration of ampicillin. II. Clinical experiment. Arch Ophthalmol 73:366–369

    PubMed  CAS  Google Scholar 

  • Langham ME (1951) Factors affecting the penetration of antibiotics into the aqueous humour. Br J Ophthalmol 35:612–620

    Google Scholar 

  • Laties AM, Rapoport S (1976) The blood-ocular barriers under osmotic stress. Arch Ophthalmol 94:1086–1091

    PubMed  CAS  Google Scholar 

  • Laurent UBG (1981) Hyaluronate in aqueous humour. Exp Eye Res 33:147–156

    PubMed  CAS  Google Scholar 

  • Lazare R, Horlington M (1975) Pilocarpine lebels in the eyes of rabbits following topical application. Exp Eye Res 21:281–287

    PubMed  CAS  Google Scholar 

  • Lazar M, Lieberman TW, Furman M, Leopold IH (1968) Ocular penetration of Hetrazan in rabbits. Am J Ophthalmol 66:215–220

    PubMed  CAS  Google Scholar 

  • Lee VH, Robinson JR (1979) Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci 68:673–684

    PubMed  CAS  Google Scholar 

  • Lee VHL, Hui HW, Robinson JR (1980) Corneal metabolism of pilocarpine in pigmented rabbits. Invest Ophthalmol Vis Sci 19:210–213

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Kupferman A (1974) Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 13:757–763

    PubMed  CAS  Google Scholar 

  • Leibowitz HM, Berrospi AR, Kupferman A, Restropo GV, Galvis V, Alvarez JA (1977) Penetration of topically administered prednisolone acetate into the human aqueous humor. Am J Ophthalmol 83:402–406

    PubMed  CAS  Google Scholar 

  • Leibowitz RH, Kupferman A, Stewart RH, Kimbrough RL (1978) Evaluation of dexamethasone acetate as a topical ophthalmic formulation. Am J Ophthalmol 86:418–423

    PubMed  CAS  Google Scholar 

  • Leopold I, Kroman HS (1960) Methyl and fluoro-substituted prednisolones in the blood and aqueous humor of the rabbit. Arch Ophthalmol 63:943–947

    PubMed  CAS  Google Scholar 

  • Leopold I, Nichols A, Vogel AW (1950) Penetration of chloramphenicol U.S.P. (Chloromycetin) into the eye. Arch Ophthalmol 44:22–32

    CAS  Google Scholar 

  • Leopold I, Sawyer J, Green H (1955 a) Intraocular penetration of locally applied steroids. Arch Ophthalmol 54:916–921

    CAS  Google Scholar 

  • Leopold I, Kroman H, Green H (1955 b) Intraocular penetration of prednisone and prednisolone. Trans Am Acad Ophthalmol Otolaryngol 59:771–778

    PubMed  CAS  Google Scholar 

  • Lepri G (1950) Experimental study of the efficiency of different substances in retarding the absorption of penicillin introduced into the subconjunctival spaces. Br J Ophthalmol 34:425–430

    PubMed  CAS  Google Scholar 

  • Levine N, Aronson S (1970) Orbital infusion of steroids in the rabbit. Arch Ophthalmol 83:599–607

    PubMed  CAS  Google Scholar 

  • Levy G (1964) Relationship between elimination rate of drugs and rate of decline of their pharmacologic effects. J Pharm Sci 53:342–343

    PubMed  CAS  Google Scholar 

  • Levy G (1971) Kinetics of drug action in man. Acta Pharmacol 29:203–210

    CAS  Google Scholar 

  • Litwack K, Pettit T, John BL (1969) Penetration of gentamicin administered intramuscularly and subconjunctivally into aqueous humor. Arch Ophthalmol 82:687–693

    PubMed  CAS  Google Scholar 

  • Loewenfeld IR, Newsome DA (1971) Iris mechanics I. Influence of pupil size on dynamics of pupillary movements. Am J Ophthalmol 71:347–363

    PubMed  CAS  Google Scholar 

  • Longwell A, Birss S, Keller N, Moore D (1976) Effect of topically applied pilocarpine on tear film pH. J Pharm Assoc 65:1654–1657

    CAS  Google Scholar 

  • Makoid MC, Robinson JR (1979) Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J Pharm Sci 68:435–443

    PubMed  CAS  Google Scholar 

  • Mandell AI, Stentz F, Kitabachi AE (1978) Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology 85:268–275

    PubMed  CAS  Google Scholar 

  • Marak GE Jr, Shichi H, Rao NA, Wacker WB (1980) Patterns of experimental allergic uveitis induced by rhodopsin and retinal rod outer segments. Ophthalmol Res 12:165–176

    CAS  Google Scholar 

  • Maren TH, Jankowska L, Sanyal G, Edelhauser HF (1983) The transcorneal permeability of sulphonamide carbonic anhydrase inhibitors and their effect on aqueous humor secretion. Exp Eye Res 36:457–480

    PubMed  CAS  Google Scholar 

  • Marsh RJ, Maurice DM (1971) The influence of non-ionic detergents and other surfactants on human corneal permeability. Exp Eye Res 11:43–48

    PubMed  CAS  Google Scholar 

  • Mathalone MBR, Harden A (1972) Penetration and systemic absorption of gentamicin after subconjunctival injection. Br J Ophthalmol 56:609–612

    PubMed  CAS  Google Scholar 

  • Matsumoto S, Hayashi K, Tsuchisaka H, Araie M (1981) Pharmacokinetics of surface anesthetics in the human cornea. Jpn J Ophthalmol 25:335–340

    CAS  Google Scholar 

  • Maurice DM (1951) The permeability to sodium ions of the living rabbit’s cornea. J Physiol 112:367–391

    PubMed  CAS  Google Scholar 

  • Maurice DM (1955) Influence on corneal permeability of bathing with solutions of differing reaction and tonicity. Br J Ophthalmol 39:463–473

    PubMed  CAS  Google Scholar 

  • Maurice DM (1957) The exchange of sodium between the vitreous body and the blood and aqueous humour. J Physiol 137:119–125

    Google Scholar 

  • Maurice DM (1959) Protein dynamics in the eye studied with labelled proteins. Am J Ophthalmol 47:361–367

    PubMed  CAS  Google Scholar 

  • Maurice DM (1960) The movement of fluorescein and water in the cornea. Am J Ophthalmol 49:1011–1016

    Google Scholar 

  • Maurice DM (1967 a) The use of fluorescein in ophthalmological research. Invest Ophthalmol 6:464–477

    PubMed  CAS  Google Scholar 

  • Maurice DM (1967 b) Nutritional aspects of corneal grafts and prostheses. In: Rycroft P (ed) Proceedings of 2nd international corneo-plastic conference, London. Pergamon, Oxford, pp 197–207

    Google Scholar 

  • Maurice DM (1969) The cornea and sclera. In: Davson H (ed) The eye, vol 1,2nd edn. Academic, New York, pp 489–600

    Google Scholar 

  • Maurice DM (1970) The physical state of water in the corneal stroma. In: Langham M (ed) The cornea. Johns Hopkins Press, Baltimore, pp 193–204

    Google Scholar 

  • Maurice DM (1971) The tonicity of an eye drop and its dilution by tears. Exp Eye Res 11:30–33

    PubMed  CAS  Google Scholar 

  • Maurice DM (1973) The dynamics and drainage of tears. In: Holly F (ed) International ophthalmology clinics, vol 13. Little, Brown, Boston, pp 103–116

    Google Scholar 

  • Maurice DM (1976) Injection of drugs into the vitreous body. In: Leopold I, Burns R (eds) Symposium on ocular therapy, vol 9. Wiley, London, pp 59–72

    Google Scholar 

  • Maurice DM (1980) Structures and fluids involved in the penetration of topically applied drugs. In: Holly F (ed) Internatinal ophthalmology clinics, vol 20. Little, Brown, Boston, pp 7–20

    Google Scholar 

  • Maurice DM (to be published a) The cornea and sclera. In: Davson H (ed) The eye, 3rd edn. Academic, New York

    Google Scholar 

  • Maurice DM (to be published b) Micropharmaceutics of the eye. Ocular Inflammation Ther

    Google Scholar 

  • Maurice DM, Ota Y (1978) The kinetics of subconjunctival injections. Jpn J Ophthalmol 22:95–100

    Google Scholar 

  • Maurice DM, Polgar J (1977) Diffusion across the sclera. Exp Eye Res 25:577–582

    PubMed  CAS  Google Scholar 

  • Maurice DM, Guss RB, Cousins S (1982) Fluorophotometry with rhodamine B. Invest Ophthalmol Vis Sci [ARVO Suppl] 22:180

    Google Scholar 

  • McCoy GA, Leopold IH (1959) Intraocular penetration of oleandomycin. Am J Opthalmol 48:666–669

    Google Scholar 

  • McDonald JE, Brubaker S (1971) Meniscus-induced thinning of tear films. Am J Ophthalmol 72:139–146

    PubMed  CAS  Google Scholar 

  • Melikian HE, Nowakowski J, Boyle G, Leopold I (1971) Use of subconjunctival hyaluroni-dase. Am J Ophthalmol 71:1313–1316

    PubMed  CAS  Google Scholar 

  • Miichi H, Nagataki S (1982) Effects of cholinergic drugs and adrenergic drugs on aqueous humor formation in the rabbit eye. Jpn J Ophthalmol 26:425–436

    PubMed  CAS  Google Scholar 

  • Mikkelson TJ, Chrai SS, Robinson JR (1973) Competitive inhibition of drug protein interaction in eye fluids and tissues. J Pharm Sci 62:1942–1945

    PubMed  CAS  Google Scholar 

  • Mikuni M, Oishi M, Hayashi H, Suda S, Imai M (1966) Studies on the ophthalmic use of cephalosporin C-cephalothin. Jpn J Clin Ophthalmol 20:439–444

    Google Scholar 

  • Milano L, Tieri O, Polzella A, Iura V (1971) La diffusione dell’ ampicillina nei fluidi oculari. Boll Oculistica 50:229–237

    Google Scholar 

  • Mishima S (1965) Some physiological aspects of the precorneal tear film. Arch Ophthalmol 73:233–241

    PubMed  CAS  Google Scholar 

  • Mishima S (1981) Clinical pharmacokinetics of the eye. Invest Ophthalmol Vis Sci 21:504–541

    PubMed  CAS  Google Scholar 

  • Mishima S, Hedbys BO (1967) The permeability of the corneal epithelium and endothelium to water. Exp Eye Res 6:10–32

    PubMed  CAS  Google Scholar 

  • Mishima S, Kudo T (1967) In vitro incubation of rabbit cornea. Invest Ophthalmol 6:329–339

    Google Scholar 

  • Mishima S, Trenberth SM (1968) Permeability of the corneal endothelium to nonelec-trolytes. Invest Ophthalmol 7:34–43

    PubMed  CAS  Google Scholar 

  • Mishima S, Gasset A, Klyce S, Baum J (1966) Determination of tear volume and tear flow. Invest Ophthalmol 5:264–276

    PubMed  CAS  Google Scholar 

  • Miyake K, Ohtsuki K (1981) Fluorescence fundusphotography by retrobulbar administration of the dye, photochemical transillumination. Jpn J Ophthalmol 25:280–298

    Google Scholar 

  • Mizukawa T, Azuma I, Kawaguchi S (1965) Intraocular penetration of new antibiotics, cephalothin and cephaloridine. J Antibiot (Tokyo) 18:525–526

    CAS  Google Scholar 

  • Mizuno K (1972) Vital stain of the anterior chamber. Jpn J Ophthalmol 16:167–173

    Google Scholar 

  • Mochizuki M (1980) Transport of indomethacin in the anterior uvea of the albino rabbit. Jpn J Ophthalmol 24:363–373

    CAS  Google Scholar 

  • Moog E (1969) Pharmakokinetische Probleme am Auge dargestellt am Beispiel der Tetracycline. Ber Zusammenkunft Dtsch Ophthalmol Ges 70:442–445

    Google Scholar 

  • Moog E, Knothe H (1968) Der Übertritt verschiedener Tetracycline ins Kammerwasser der Menschen in Abhängigkeit von ihrer Eiweißbindung im Blutserum. Ber Zusammenkunft Dtsch Ophthalmol Ges 69:536–539

    Google Scholar 

  • Moog E, Knothe H, Vogel F, Fabricius K (1969) Der Übertritt von Pyrrolidinomethyltetra- cyclin (PMT) in das Kammerwasser des Menschen nach systemischer Verabreichung. Klin Monatsbl Augenheilkd 155:828–836

    PubMed  CAS  Google Scholar 

  • Moog E, Knothe H, Moller CO (1971) Doxycyclinspiegel in Serum und Kammerwasser beim Menschen. Albrecht Von Graefes Arch klin Exp Ophthalmol 181:246–254

    PubMed  CAS  Google Scholar 

  • Moses RA (1965) Detachment of ciliary body—anatomical and physical considerations. Invest Ophthalmol 4:935–941

    PubMed  CAS  Google Scholar 

  • Mosher GL, Mikkelson TJ (1979) Permeability of the N-alkyl-/p-aminobenzoate esters across the isolated corneal membrane of the rabbit. Int J Pharmaceutics 2:239–243

    CAS  Google Scholar 

  • Murai Y (1976) Studies of tear flow using sodium pertechnetate TC99m. Jpn J Ophthalmol 20:283–289

    Google Scholar 

  • Musini A, Cattani F, Bonora F (1970) Emploi de la rifampicine en ophtalmologie. Arch Ophtalmol (Paris) 30:809–816

    CAS  Google Scholar 

  • Nagataki S (1975) Human aqueous humor dynamics. Jpn J Ophthalmol 19:235–249

    Google Scholar 

  • Nakatsue S (1971a) Intraocular penetration of antibiotics into rabbit eye with purulent virus. I. Penicillin. Acta Soc Ophthalmol Jpn 75:1231–1235

    CAS  Google Scholar 

  • Nakatsue S (1971b) Intraocular penetration of antibiotics into rabbit eye with purulent uveitis. II. Tetracycline. Acta Soc Ophthalmol Jpn 75:1236–1239

    CAS  Google Scholar 

  • Nakatsue S (1971c) Intraocular penetration of antibiotics into rabbit eye. III. Kanamycin. Acta Soc Ophthalmol Jpn 75:1240–1243

    CAS  Google Scholar 

  • Nakatsue S (1971 d) Intraocular penetration of antibiotics into rabbit eye with purulent uveitis. IV. Lincomycin. Acta Soc Ophthalmol Jpn 75:1244–1247

    CAS  Google Scholar 

  • Neufeld AH, Sears ML (1973) The site of action of prostaglandin E2 on the blood-aqueous barrier in the rabbit eye. Exp Eye Res 17:445–448

    PubMed  CAS  Google Scholar 

  • Newsome DA, Stern R (1974) Pilocarpine adsorption by serum and ocular tissues. Am J Ophthalmol 77:918–922

    PubMed  CAS  Google Scholar 

  • Oakley DE, Weeks RD, Ellis PP (1976) Corneal distribution of subconjunctival antibiotics. Am J Ophthalmol 81:307–312

    PubMed  CAS  Google Scholar 

  • O’Brien WJ, Edelhauser HF (1977) The corneal penetration of trifluorothymidine, adenine arabinoside and idoxuridine: a comparative study. Invest Ophthalmol Vis Sci 16:1093–1103

    PubMed  Google Scholar 

  • Ohara K (1977) Effects of cholinergic agonists on isolated iris sphincter muscles; a pharmacodynamic study. Jpn J Ophthalmol 21:516–527

    CAS  Google Scholar 

  • Ohnishi Y, Tanaka M (1981) Effects of pilocarpine and paracentesis on occluding junctions between the nonpigmented ciliary epithelial cells. Exp Eye Res 32:635–647

    PubMed  CAS  Google Scholar 

  • Oishi M, Nishizuka K, Motoyama M, Ogawa T (1975) Intraocular penetration and effect of tobramycin in experimental Pseudomonas keratitis. Acta Soc Ophthalmol Jpn 79:1329–1335

    CAS  Google Scholar 

  • Oishi M, Nishizuka K, Motoyama M, Ogawa T (1977) Basic studies on the ophthalmic use of fosfomycin as topical application—stability, ocular disturbance and intraocular penetration. Jpn J Ophthalmol 81:1744–1750

    CAS  Google Scholar 

  • Okisaka S (1976) Effects of paracentesis on the blood-aqueous barrier: a light and electron microscopic study on cynomolgus monkey. Invest Ophthalmol 15:824–834

    PubMed  CAS  Google Scholar 

  • O’Rourke J, Macri FJ, Berghoffer B (1969) Studies in uveal physiology. Arch Ophthalmol 81:526–533

    PubMed  Google Scholar 

  • Ota Y, Mishima S, Maurice DM (1974) Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol 13:945–949

    PubMed  CAS  Google Scholar 

  • Palm E (1947) On the passage of ethyl alcohol from the blood into the aqueous humour. Acta Ophthalmol [Suppl] 25:139–164

    Google Scholar 

  • Palm E (1948) On the phosphate exchange between the blood and the eye. Acta Ophthalmol [Suppl] 32:1–120

    CAS  Google Scholar 

  • Papapanos G, Trichtel F, Papapanu R (1961 a) Über den Penicillinspiegel im Kammerwasser und Glaskörper nach subconjunctivaler, retrobulbärer und iontophoretischer Zufuhr von Penicillin G und V. Albrecht Von Graefes Arch Klin Exp Ophthalmol 163:493–500

    CAS  Google Scholar 

  • Papapanos G, Spitzy KH, Trichtel F (1961 b) Über den Durchtritt von Penicillinen in das Kammerwasser und den Glaskörper des menschlichen Auges. Ophthalmologica 142:519–525

    PubMed  CAS  Google Scholar 

  • Papapanos G, Trichtel F, Spitzy KH (1962) Die Penicillinkonzentration im Serum, Kammerwasser und Glaskörper nach oraler Penicillinmedikation. Wien Klin Wochenschr 74:439–442

    PubMed  CAS  Google Scholar 

  • Paque JT, Peyman GA (1974) Intravitreal clindamycin phosphate in the treatment of vitreous infection. Ophthalmol Surg 5:34–39

    Google Scholar 

  • Patton TF (1977) Pharmacokinetic evidence for improved ophthalmic drug delivery by reduction of instilled volume. J Pharm Sci 66:1058–1059

    PubMed  CAS  Google Scholar 

  • Patton TF, Robinson JR (1975) Influence of topical anesthesia on tear dynamics and ocular drug bioavailability in albino rabbits. J Pharm Sci 64:267–271

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D, Dohlman CH, Geary P, Sulzewski D (1973) Intraocular penetration of ARA A and IDU—therapeutic implications in clinical herpetic uveitis. Trans Am Acad Ophthalmol Otolaryngol 77:455–456

    Google Scholar 

  • Petounis A, Papapanos G, Karageorgiou-Makromihelaki C (1978) Penetration of tobramycin sulphate into the human eye. Br J Ophthalmol 62:660–662

    PubMed  CAS  Google Scholar 

  • Peyman GA, Spitznas M, Straatsma BR (1971) Peroxidase diffusion in the normal and photocoagulated retina. Invest Ophthalmol 10:181–189

    PubMed  CAS  Google Scholar 

  • Peyman G, May D, Ericson E, Apple D (1974 a) Intraocular injection of gentamicin. Arch Ophthalmol 92:42–47

    PubMed  CAS  Google Scholar 

  • Peyman G, Nelsen P, Bennett T (1974 b) Intravitreal injection of kanamycin in experimentally induced endophthalmitis. Can J Ophthalmol 9:322–327

    PubMed  CAS  Google Scholar 

  • Phillips CI, Bartholomew RS, Ghulamqadir K, Schmitt CJ, Vogel R (1981) Penetration of timolol eye drops into human aqueous humour. Br J Ophthalmol 65:593–595

    PubMed  CAS  Google Scholar 

  • Pohjanpelto PEJ, Sarmela TJ, Raines T (1974) Penetration of trimethoprim and sul-phamethoxazole into the aqueous humour. Br J Ophthalmol 58:606–608

    PubMed  CAS  Google Scholar 

  • Poise KA, Keener RJ, Jauregui MJ (1978) Dose-response effects of corneal anesthetics. Am J Optom Physiol Opt 55:8–14

    Google Scholar 

  • Pryor JG, Apt L, Leopold IH (1962) Intraocular penetration of vancomycin. Arch Ophthalmol 67:607–611

    Google Scholar 

  • Rae JL (1974) The movement of procion dye in the crystalline lens. Invest Ophthalmol 13:147–150

    PubMed  CAS  Google Scholar 

  • Raviola G (1974) Effects of paracentesis on the blood-aqueous barrier: an electron microscopic study on Macaca mulatta using horseradish peroxidase as a tracer. Invest Ophthalmol 13:828–858

    PubMed  CAS  Google Scholar 

  • Raviola G (1977) The structural basis of the blood-ocular barriers. The ocular and cerebrospinal fluids. Exp Eye Res [Suppl] 25:27–63

    PubMed  Google Scholar 

  • Raviola G, Raviola E (1978) Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci 17:958–976

    PubMed  CAS  Google Scholar 

  • Records R (1967) Subconjunctival injection of the repository penicillins. Arch Ophthalmol 78:380–383

    PubMed  CAS  Google Scholar 

  • Records R (1968 a) Intraocular penetration of cephalothin. I. Animal studies. Am J Ophthalmol 66:436–440

    Google Scholar 

  • Records RE (1968 b) Intraocular penetration of cephalothin. II. Human studies. Am J Ophthalmol 66:441–443

    PubMed  CAS  Google Scholar 

  • Records R (1969 a) The penicillins in ophthalmology. Survey Ophthalmol 13:207–214

    CAS  Google Scholar 

  • Records R (1969 b) Intraocular penetration of cephaloridine. Arch Ophthalmol 81:331–335

    PubMed  CAS  Google Scholar 

  • Records R (1971) The human intraocular penetration of a new orally effective cephalosporin antibiotic, cephalexin. Ann Ophthalmol 309–313

    Google Scholar 

  • Reddy VN (1979) Dynamics of transport systems in the eye. Invest Ophthalmol Vis Sci 18:1000–1018

    PubMed  CAS  Google Scholar 

  • Refojo MF (1982) Molecular shape and effective diffusion radius. Invest Ophthalmol Vis Sci 22:129–130

    PubMed  CAS  Google Scholar 

  • Richards AB, Bron AJ, Rice NSC, Fells P, Marshall MJ, Jones BR (1972) Intraocular penetration of cephaloridine. Br J Ophthalmol 56:531–536

    PubMed  CAS  Google Scholar 

  • Richards AB, Bron AJ, McLendon B, Kennedy MRK, Walker SR (1979) The intraocular penetration of cefuroxime after parenteral administration. Br J Ophthalmol 63:687–689

    PubMed  CAS  Google Scholar 

  • Ridley F (1958) Use of topical antibiotics in ophthalmology. Trans Ophthalmol Soc UK 78:335–358

    CAS  Google Scholar 

  • Rieder J, Ellerhorst B, Schwartz DE (1974) Übergang von Sulfamethoxazol and Trimethoprim in das Augenkammerwasser beim Menschen. Albrecht Von Graefes Arch klin Exp Ophthalmol 190:51–61

    PubMed  CAS  Google Scholar 

  • Riegelman S, Vaughan DG (1958) A rational basis for the preparation of ophthalmic solutions. Survey Ophthalmol 3:471–492

    CAS  Google Scholar 

  • Riley F, Boyle G, Leopold I (1968) Intraocular penetration of cephaloridine in humans. Am J Ophthalmol 66:1042–1049

    PubMed  CAS  Google Scholar 

  • Robson JM, Tebrich W (1942) Penetration and distribution of sodium sulphacetamide in ocular tissues of rabbits. Br Med J June 6,1942:687–690

    Google Scholar 

  • Rohen JW (1961) Comparative and experimental studies on the iris of primates. Am J Ophthalmol 52:384–396

    PubMed  CAS  Google Scholar 

  • Ros FE, Innemee HC, van Zwieten PA (1978) Penetration of atenolol in the rabbit eye. Arch Ophthalmol 208:235–240

    CAS  Google Scholar 

  • Rosenblum C, Dengler R, Geoffroy R (1967) Ocular absorption of dexamethasone phosphate disodium by the rabbit. Arch Ophthalmol 77:234–237

    PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN (1980) Clinical pharmokinetics: concepts and applications. Lea and Febiger, Philadelphia, pp 124–137

    Google Scholar 

  • Salminen L (1977 a) Penetration of ocular compartments by tetracyclines. 1. An experimental study with tetracycline. Albrecht Von Graefes Arch klin Exp Ophthalmol 204:189–199

    PubMed  CAS  Google Scholar 

  • Salminen L (1977 b) Penetration of ocular compartments by tetracyclines. II. An experimental study with doxycycline. Albrecht Von Graefes Arch klin Exp Ophthalmol 204:201–207

    PubMed  CAS  Google Scholar 

  • Salminen L (1978 a) Cloxacillin distribution in the rabbit eye after intravenous injection. Acta Ophthalmol 56:11–19

    CAS  Google Scholar 

  • Salminen L (1978 b) Ampicillin penetration into the rabbit eye. Acta Ophthalmol 56:977–983

    CAS  Google Scholar 

  • Salminen L, Jarvinen H, Toivanen P (1969) Distribution of tritiated benzylpenicillin in the rabbit eye. Acta Ophthalmol 47:115–121

    CAS  Google Scholar 

  • Saubermann G (1956) Untersuchungen über das Eindringen antibiotischer Substanzen in Kammerwasser und Glaskörper des menschlichen Auges. Bibl Ophthalmol Fasc 46

    Google Scholar 

  • Sawa M, Araie M, Nagataki S (1981) Permeability of the human corneal endothelium to fluorescein. Jpn J Ophthalmol 25:60–68

    CAS  Google Scholar 

  • Schenk AG, Peyman GA, Paque JT (1974) The intravitreal use of carbenicillin (Geopen) for treatment of Pseudomonas endophthalmitis. Acta Ophthalmol 53:707–717

    Google Scholar 

  • Schmitt CJ, Lotti VJ, LeDouarec JC (1980) Penetration of timiolol into the rabbit eye. Measurement after ocular instillation and intravenous injection. Arch Ophthalmol 98:547–551

    PubMed  CAS  Google Scholar 

  • Schoenwald RD, Smolen VF (1971) Drug absorption analysis from pharmacological data. II. Transcorneal biophasic availability of tropicamide. J Pharm Sci 60:1039–1045

    PubMed  CAS  Google Scholar 

  • Schoenwald RD, Ward RL (1978) Relationship between steroid permeability across excised rabbit cornea and octanol water partition coefficients. J Pharm Sci 67:786–788

    PubMed  CAS  Google Scholar 

  • Schonberg SS, Ellis PP (1969) Pilocarpine inactivation. Arch Ophthalmol 82:351–355

    PubMed  CAS  Google Scholar 

  • Sears ML (1961) The immediate reaction to ocular trauma. Ophthalmologica 142:558–561

    Google Scholar 

  • Sears ML (1974) The use of aspirin and aspirin-like drugs in ophthalmology. In: IH Leopold (ed) Symposium on ocular therapy, vol 7. Mosby, St. Louis, chap 10, pp 104–115

    Google Scholar 

  • Seidel E (1918) Experimentelle Untersuchungen Quelle und den Verlauf der intraokularen Safstromung. Albrecht Von Graefes Arch Klin Exp Ophthalmol 95:1–72

    Google Scholar 

  • Sendelbeck L, Moore D, Urquhart J (1975) Comparative distribution of pilocarpine in ocular tissues of the rabbit during administration by eyedrop or by membrane-controlled delivery systems. Am J Ophthalmol 80:274–283

    PubMed  CAS  Google Scholar 

  • Sery TW, Paul SD, Leopold IH (1957) Novobiocin, a new antibiotic. Arch Ophthalmol 57:100–109

    Google Scholar 

  • Shanthaverrappa TR, Bourne GH (1964) Monoamine oxidase distribution in the rabbit eye. J Histochem Cytochem 12:281–287

    Google Scholar 

  • Shell JW (1982) Ocular drug delivery systems—a review. J Toxicol Cutaneous Ocular Pathol 1:49–63

    CAS  Google Scholar 

  • Sherman SH, Green K, Laties AM (1978) The fate of anterior chamber fluorescein in the monkey eye. I. The anterior chamber outflow pathways. Exp Eye Res 27:159–173

    PubMed  CAS  Google Scholar 

  • Shiose Y (1970) Electron microscopic studies on blood-retinal and blood-aqueous barrier. Jpn J Ophthalmol 14:73–87

    Google Scholar 

  • Shorr N, Mack L, Smith JW (1969) Erythromycin in the aqueous humour. Br J Ophthalmol 53:331–334

    PubMed  CAS  Google Scholar 

  • Short C, Keates RH, Donovan EF, Wyman M, Murdick PW (1966) Ocular penetration studies. I. Topical administration of dexamethasone. Arch Ophthalmol 75:689–692

    PubMed  CAS  Google Scholar 

  • Sidikaro J, Jones DB (1981) Concentration of gentamicin in preocular tear film following topical application. Invest Ophthalmol Vis Sci [ARVO Suppl] 20:109

    Google Scholar 

  • Sieg JW, Robinson JR (1974) Corneal absorption of fluorometholone in rabbits. Arch Ophthalmol 92:240–243

    PubMed  CAS  Google Scholar 

  • Sieg JW, Robinson JR (1975) Vehicle effects on ocular drug bioavailability. I. Evaluation of fluorometholone. J Pharm Sci 64:931–936

    PubMed  CAS  Google Scholar 

  • Sieg JW, Robinson JR (1976) Mechanistic studies on transcorneal permeation of pilocarpine. J Pharm Sci 65:1816–1822

    PubMed  CAS  Google Scholar 

  • Sieg JW, Robinson JR (1977) Vehicle effects on ocular drug bioavailability. II. Evaluation of pilocarpine. J Pharm Sci 66:1222–1228

    PubMed  CAS  Google Scholar 

  • Smelser GK, Ishikawa T (1962) Investigation on the porosity of the iris. 19th int cong Ophthalmol, vol 1, pp 612–623

    Google Scholar 

  • Smelser GK, Ishikawa T, Pei YF (1965) Electron microscopic studies on intraretinal spaces: diffusion of particulate materials. In: Rohen JW (ed) The structure of the eye 2. Schattauer, Stuttgart, pp 109–120

    Google Scholar 

  • Smith SE (1974) Dose-response relationships in tropicamide-induced mydriasis cycloplegia. Br J Clin Pharm 1:37–40

    CAS  Google Scholar 

  • Smolen VF (1971) Quantitative determination of drug bioavailability and biokinetic behavior from pharmacological data for ophthalmic and oral administrations of a mydriatic drug. J Pharm Sci 60:354–365

    PubMed  CAS  Google Scholar 

  • Smolen VF (1973) Optimal control of drug input and response dynamics: a role for biomedical engineering in pharmaceutical science. Am J Pharm Ed 37:107–125

    Google Scholar 

  • Smolen VF (1978) Bioavailability and pharmacokinetic analysis of drug responding systems. Ann Rev Pharmacol Toxicol 18:495–522

    CAS  Google Scholar 

  • Smolen VF, Siegel FP (1968) Procaine interaction with the corneal surface and its relation to anesthesia. J Pharm Sci 57:378–384

    PubMed  CAS  Google Scholar 

  • Sϕrensen N (1971) The penetration of quinine, salicylic acid, PAS, salicyluric acid, barbital and lithium across the vitreous barrier of the rabbit eye. Acta Pharmacol Toxicol (Co-penh) 29:194–208

    Google Scholar 

  • Sorsby A, Ungar J (1947) Distribution of penicillin in the eye after subconjunctival injection. Br J Ophthalmol 31:517–528

    Google Scholar 

  • Steinberg RH, Miller SS (1979) Transport and membrane properties of the retinal pigment epithelium. In: Marmor MF, Zinn KM (eds) The retinal pigment epithelium. Harvard University Press, Cambridge, pp 205–225

    Google Scholar 

  • Stjernschantz J (1981) Neuropeptides in the eye. In: Sears ML (ed) New directions in ophthalmic research. Yale University Press, New Haven, pp 327–358

    Google Scholar 

  • Sugaya M, Nagataki S (1978) Kinetics of topical pilocarpine in the human eye. Jpn J Ophthalmol 22:127–141

    CAS  Google Scholar 

  • Susina SV, Hitter FD, Siegel FP, Blake MI (1962) Effect of deuterium oxide on local anesthetic activity of procaine. J Pharm Sci 51:1162–1169

    Google Scholar 

  • Swan KC, White NG (1942) Corneal Permeability I. Factors affecting penetration of drugs into the cornea. Am J Ophthalmol 25:1043–1058

    Google Scholar 

  • Swan K, Crisman H, Bailey P (1956) Subepithelial versus subcapsular injections of drugs. Arch Ophthalmol 56:26–33

    CAS  Google Scholar 

  • Szalay J, Nunziata B, Henkind P (1975) Permeability of iridial blood vessels. Exp Eye Res 21:531–543

    PubMed  CAS  Google Scholar 

  • Tabarra KF, O’Connor GR (1975) Ocular tissue absorption of clindamycin phosphate. Arch Ophthalmol 93:1180–1185

    Google Scholar 

  • Takahashi T (1971a) Intraocular penetration of kanendomycin. 2. Subconjunctival injection. Acta Soc Ophthalmol Jpn 75:7–12

    CAS  Google Scholar 

  • Takahashi T (1971b) Intraocular penetration of kanendomycin. 3. Retrobulbar injection. Acta Soc Ophthalmol Jpn 75:13–19

    CAS  Google Scholar 

  • Takahashi T (1971c) Intraocular penetration of kanendomycin a4. Systemic administration. Acta Soc Ophthalmol Jpn 75:20–30

    CAS  Google Scholar 

  • Takase M, Komuro S, Nanba H, Araie M (1978) Effects of topical bupranolol hydrochloride on the intraocular pressure. Jpn J Ophthalmol 22:142–154

    CAS  Google Scholar 

  • Trichtel F, Papapanos G (1961) Über den Penicillinspiegel in Serum, Kammerwasser und Glaskörper nach intravenöser und intramuskulärer Injection von Penicillin G und V. Albrecht Von Graefes Arch Klin Exp Ophthalmol 164:42–48

    CAS  Google Scholar 

  • Trolle-Lassen C (1958) Investigations into the sensitivity of the human eye to hypo- and hypertonic solutions as well as solutions with unphysiological hydrogen ion concentrations. Pharm Weekbl [Sci] 93:148–155

    CAS  Google Scholar 

  • Tsacopoulos M (1969) The penetration of Vibramycin (doxycycline) in human aqueous humor. Ophthalmologica 159:418–429

    PubMed  CAS  Google Scholar 

  • Tso M, Shih C (1977) Experimental macular edema after lens extraction. Invest Ophthalmol 16:381–392

    CAS  Google Scholar 

  • Utermann D, Matz K, Meyer K (1977) Gentamicinspiegel im Kammerwasser des Menschen nach parenteraler, subkonjunktivaler und lokaler Applikation. Klin Monatsbl Augen-heilkd 171:579–583

    CAS  Google Scholar 

  • Uwaydah MM, Faris BM, Samara IN, Shammas HF, To’mey KF (1976) Cloxacillin penetration. Am J Ophthalmol 82:114–116

    PubMed  CAS  Google Scholar 

  • Vegge T, Neufeld AH, Sears ML (1975) Morphology of the breakdown of the blood-aqueous barrier in the ciliary processes of the rabbit eye after prostaglandin E2. Invest Ophthalmol 14:33–36

    PubMed  CAS  Google Scholar 

  • Vegge T, Neufeld AH, Sears ML (1976) Movement of a protein tracer (horseradish peroxidase) in the anterior uvea. In: Yamada E, Mishima S (eds) The structure of the eye III. Proceedings of the third international symposium, 1975. Jpn J Ophthalmol 103–110

    Google Scholar 

  • von Sallmann L (1945) Penetration of penicillin into the eye. Further studies. Arch Ophthalmol 34:195–201

    Google Scholar 

  • von Sallmann L (1947) Controversial points in ocular penicillin therapy. Trans Am Ophthalmol Soc 45:570–636

    Google Scholar 

  • von Sallmann L, Meyer K (1944) Penetration of penicillin into the eye. Arch Ophthalmol 31:1–7

    Google Scholar 

  • Wacker WB, Donoso LA, Kalsaw CM, Yankeelou JA Jr, Organisciak DT (1977) Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol 119:1949–1957

    PubMed  CAS  Google Scholar 

  • Wagner JG (1968) Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J Theoret Biol 20:173–201

    CAS  Google Scholar 

  • Waltman S, Sears ML (1964) Catechol-O-methyl transferase and monoamine oxidase activity in the ocular tissues of albino rabbits. Invest Ophthalmol 3:601–605

    PubMed  CAS  Google Scholar 

  • Wei CP, Anderson JA, Leopold I (1978) Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci 17:315–321

    PubMed  CAS  Google Scholar 

  • Weld CB, Feindel WH, Davson H (1942) The penetration of sugars into the aqueous humor. Am J Physiol 137:421–425

    CAS  Google Scholar 

  • Wine NA, Gornall AG, Basu PK (1964) The ocular uptake of subconjunctivally injected C14 hydrocortisone. I. Time and major route of penetration. Am J Ophthalmol 58:362–366

    PubMed  CAS  Google Scholar 

  • Wistrand PJ, Rawls JR, Maren TH (1960) Sulphonamide carbonic anhydrase inhibitors and intraocular pressure in rabbits. Acta Pharmacol Toxicol 17:337–355

    CAS  Google Scholar 

  • Witzel SH, Ingrid MD, Fielding IZ, Ormsby HL (1956) Ocular penetration of antibiotics by iontophoresis. Am J Ophthalmol 42:89–95

    PubMed  Google Scholar 

  • Yamauchi H, Kito H, Uda K (1975) Studies on intraocular penetration and metabolism of fluorometholone in rabbits: a comparison between dexamethasone and prednisolone acetate. Jpn J Ophthalmol 19:339–347

    CAS  Google Scholar 

  • Yoshida S (1976) Analysis of cycloplegic response to topical tropicamide. Folio Ophthalmol Jpn 11:1009–1011

    Google Scholar 

  • Yoshida S, Mishima S (1975) A pharmacokinetic analysis of the pupil response to topical pilocarpine and tropicamide. Jpn J Ophthalmol 19:121–138

    Google Scholar 

  • Zirm M (1980) Proteins in aqueous humor. Adv Ophthalmol 40:100–172

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maurice, D.M., Mishima, S. (1984). Ocular Pharmacokinetics. In: Sears, M.L. (eds) Pharmacology of the Eye. Handbook of Experimental Pharmacology, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69222-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69222-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69224-6

  • Online ISBN: 978-3-642-69222-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics