Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 6 / 6 A))

Abstract

“I come to the discussion of a remarkable optical phenomenon the unravelling of which has caused me a good deal of worry.” In this way Sigmund Exner (1891, p. 162) begins the chapter on pseudopupils in his invaluable monograph “Die Physiologie der facettirten Augen von Krebsen und Insecten”. His worry has proved worthwhile because his recognition that pseudopupils are optical revelations of the interior of compound eyes has been of longlasting and immense importance. The aims of this chapter are to show that pseudopupil phenomena provide a direct and deep insight, both figuratively and literally, into compound-eye structure and function, and also to indicate possible paths for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldus, K.,: Experimentelle Untersuchungen über die Entfernungslokalisation der Libellen (Aeschna cyanea). Z. vergl. Physiol. 3, 475–505 (1926).

    Google Scholar 

  • Barlow, R.B., Bolanawski, S. J., Brachman, M. L.: Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197, 86–89 (1977).

    PubMed  Google Scholar 

  • Barneveld, H.H.van: Statistical analysis of repetitive neural activity. Clock-spikes in Calliphora ery-throcephala. Thesis, Groningen 1971.

    Google Scholar 

  • Barrós-Pita, J.C., Maldonado, H.: A fovea in the praying mantis eye. II. Some morphological characteristics. Z. vergl. Physiol. 67, 79–92 (1970).

    Google Scholar 

  • Baumann, F.: Electrophysiological properties of the honey bee retina. In: The compound eye and vision of insects (ed. G. A. Horridge), pp.53–74. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Baumgaertner, H.: Der Formensinn und die Sehschärfe der Bienen. Z. vergl. Physiol. 7, 56–143 (1928).

    Google Scholar 

  • Beersma, D.G. M.: Spatial characteristics of the visual field of flies. Thesis, Groningen 1979.

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. comp. Physiol. 102, 305–320 (1975).

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G., Kuiper, J. W.: Retinal lattice, visual field and binocularities in flies. Dependence on species and sex. J. comp. Physiol. 119, 207–220 (1977).

    Google Scholar 

  • Behrens, M.E.: Photomechanical changes in the ommatidia of the Limulus lateral eye during light and dark adaptation. J. comp. Physiol. 89, 45–57 (1974).

    Google Scholar 

  • Bennitt, R.: Physiological interrelationship in the eyes of decapod Crustacea. Physiol. Zool. 5, 49–64 (1932).

    Google Scholar 

  • Bernard, G. D.: Evidence for visual function of corneal interference filters. J. Insect Physiol. 17, 2287 – 2300 (1971).

    PubMed  CAS  Google Scholar 

  • Bernard, G.D.: Discovery of red-receptors in butterfly retinas. Invest. Ophthalmol. [Suppl.] p.6 (1977).

    Google Scholar 

  • Bernard, G. D.: Red-absorbing visual pigment of butterflies. Science, in press (1979).

    Google Scholar 

  • Bernard, G.D., Miller, W.H.: Interference filters in the corneas of Diptera. Invest. Ophthalmol. 7, 416–434 (1968).

    PubMed  CAS  Google Scholar 

  • Bernard, G.D., Stavenga, D.G.: The pupillary response of flies as an optical probe for determining spectral sensitivities of retinular cells in completely intact animals. Biol. Bull. 153, 415 (1977).

    Google Scholar 

  • Bernard, G.D., Stavenga, D. G.: Spectral sensitivities of retinular cells measured in intact, living bumblebees by an optical method. Naturwissenschaften 65, 442 (1978).

    Google Scholar 

  • Bernard, G. D., Wehner,R.: Functional similarities between polarization vision and color vision. Vision Res. 17, 1019–1028 (1977).

    PubMed  CAS  Google Scholar 

  • Bernhard, C. G., Miller, W.H., Møller, A. R.: The insect corneal nipple array. Acta physiol. scand. 63, Suppl. 243, 1–79 (1965).

    Google Scholar 

  • Bernhard, C.G., Gemne, G., Seitz, A.G.: Optical properties of the compound eye. In: Handbook of sensory physiology, Vol. VII/2 (ed. M.G.F. Fuortes), pp.357–380. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Bishop, L.G.: An ultraviolet receptor in a dipteran compound eye. J. comp. Physiol. 91, 267–275 (1974).

    Google Scholar 

  • Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. 118, 369–409 (1971).

    PubMed  CAS  Google Scholar 

  • Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    PubMed  CAS  Google Scholar 

  • Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970).

    PubMed  CAS  Google Scholar 

  • Braitenberg, V.: Periodic structures and structural gradients in the visual ganglia of the fly. In: Information processing in the visual systems of arthropods (ed. R. Wehner), pp.3–15. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Braitenberg, V., Strausfeld, N. J.: Principles of the mosaic organization in the visual system’s neuropil of Musca domestica. In: Handbook of sensory physiology, Vol.VII/3A (ed. R. Jung), pp.631–660. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Brown, F.A.: Physiological rhythms. In: The physiology of Crustacea, Vol.2 (ed. T.H. Waterman), pp.401–430. New York-London: Academic Press 1961.

    Google Scholar 

  • Brown, F.A.: Biological rhythms. In: Comparative animal physiology (ed. C. L. Prosser), pp.429–456. Philadelphia: Saunders 1973.

    Google Scholar 

  • Brown, P.K., White, R.H.: Rhodopsin of the larval mosquito. J. gen. Physiol. 59, 401–414 (1972).

    PubMed  CAS  Google Scholar 

  • Brunnert, A., Wehner,R.: Fine structure of light- and dark-adapted eyes of desert ants, Cataglyphis bicolor (Formicidae, Hymenoptera). J. Morph. 140, 15–30 (1973).

    Google Scholar 

  • Bruno, M. S., Barnes, S. N., Goldsmith, T. H.: The visual pigment and visual cycle of the lobster, Homarus. J. comp. Physiol. 120, 123–142 (1977).

    CAS  Google Scholar 

  • Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976).

    Google Scholar 

  • Bullock, T. H., Horridge, G.A.: Structure and function in the nervous systems of invertebrates. San Francisco-London: Freeman 1965.

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86–109 (1962).

    Google Scholar 

  • Burkhardt, D., Darnhofer-Demar, B., Fischer, K.: Zum binokularen Entfernungssehen der Insekten. 1. Die Struktur des Sehraums von Synsekten. J. comp. Physiol. 87, 165–188 (1973).

    Google Scholar 

  • Burkhardt, D., Motte, I. de la, Seitz, G.: Physiological optics of the compound eye of the blowfly. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp.51–62. Oxford: Pergamon Press (1966).

    Google Scholar 

  • Burtt, E.T., Patterson ,J.A.: Internal muscle in the eye of an insect. Nature 228, 183–184 (1970).

    PubMed  CAS  Google Scholar 

  • Butler, R.: The identification and mapping of spectral cell types in the retina of Periplaneta americana. Z. vergl. Physiol. 72, 67–80 (1971).

    Google Scholar 

  • Butler, R., Horridge, G. A.: The electrophysiology of the retina of Periplaneta americana L. 1. Changes in receptor acuity upon light/dark adaptation. J. comp. Physiol. 83, 263–278 (1973).

    Google Scholar 

  • Chamberlain, S.C., Barlow, R.B.: Morphological correlates of efferent circadian activity and light adaptation in the Limulus lateral eye. Biol. Bull. 153, 418–419 (1977).

    Google Scholar 

  • Collet, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. comp. Physiol. 99, 1–66 (1975).

    Google Scholar 

  • Cosens, D., Briscoe, D.: A switch phenomenon in the compound eye of the white eyed mutant of Drosophila melanogaster. J. Insect Physiol. 18, 627–632 (1972).

    Google Scholar 

  • Dartnall, H.J.A.: Photosensitivity. In: Handbook of sensory physiology, Vol.VII/1 (ed. H.J.A. Dartnail), pp. 122–145. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Demoli, R.: Über eine lichtzersetzliche Substanz im Facettenauge, sowie über eine Pigmentwanderung im Appositionsauge. Arch. ges. Physiol. 129, 461–475 (1909 a).

    Google Scholar 

  • Demoli, R.: Über die Beziehungen zwischen der Ausdehnung des binokularen Sehraumes und dem Nahrungserwerb bei einigen Insekten. Zool. Jb. (System. Geogr. Biol. Tiere) 28, 523–530 (1909 b).

    Google Scholar 

  • Demoll, R.: Über die Wanderung des Irispigments im Facettenauge. Zool. Jb. (Allgem. Zool. Physiol.) 30, 169–180(1911).

    Google Scholar 

  • Demoli, R.: Die Sinnesorgane der Arthropoden, ihr Bau und ihre Funktion. Braunschweig: Vieweg 1917.

    Google Scholar 

  • Demoli, R., Scheuring, L.: Die Bedeutung der Ocellen von Insekten. Zool. Jb. (Allg. Zool. Physiol.) 31, 519–628(1912).

    Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).

    Google Scholar 

  • Dörrscheidt-Käfer, M. J.: Die Empfindlichkeit einzelner Photoreceptoren im Komplexauge von Calliphora erythrocephala. J. comp. Physiol. 81, 309–340 (1972).

    Google Scholar 

  • Duelli, P.: A fovea for e-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenop-tera). J. comp. Physiol. 102, 43–56 (1975).

    Google Scholar 

  • Dvorak, D.R., Bishop, L. G., Eckert, H.E.: Intracellular recording and staining of directionally selective motion detecting neurons in fly optic lobe. Vision Res. 15, 451–453 (1975 a).

    PubMed  CAS  Google Scholar 

  • Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. comp. Physiol. 100, 5–23 (1975 b).

    Google Scholar 

  • Eakin, R.M.: Structure of invertebrate photoreceptors. In: Handbook of sensory physiology. Vol. VII/1 (ed. H. J. A. Dartnall), pp.625–684. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Eckert, H.E.: Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestic L. Kybernetik 14, 1–23 (1973).

    PubMed  CAS  Google Scholar 

  • Edrich, W., Helversen, O. von: Polarized light orientation of the honey bee: the minimum visual angle. J. comp. Physiol. 109, 309–314 (1976).

    Google Scholar 

  • Eguchi, E.: Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonfly Aeschna. Z. vergl. Physiol. 71, 201–218 (1971).

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87–101 (1968).

    CAS  Google Scholar 

  • Eguchi, E., Waterman, T.H.: Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137, 145–157 (1973).

    CAS  Google Scholar 

  • Eheim, W. P.: Directional intensity distribution in single ommatidia of the honeybee, Apis mellifera. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp.83–87. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Eheim, W.R, Wehner, R.: Die Sehfelder der zentralen Ommatidien in den Appositionsaugen von Apis mellifica und Cataglyphis bicolor (Apidae, Formicidae; Hymenoptera). Kybernetik 10, 168–179 (1972).

    PubMed  CAS  Google Scholar 

  • Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig-Wien: Deuticke 1891.

    Google Scholar 

  • Franceschini, N.: Sur le traitement optique de l’information visuelle dans l’oeil à facettes de la droso-phile. Thesis, Grenoble 1972 a.

    Google Scholar 

  • Franceschini, N.: Pupil and pseudopupil in the compound eye of Drosophila. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp.75–82. Berlin-Heidelberg-New York: Springer 1972 b.

    Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.98–125. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Franceschini, N.: In vivo fluorescence of the rhabdomeres in an insect eye. Proc. Int. Union Physiol. Sci. 13, p. 237. 27th Int. Congr. (Paris) 1977.

    Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971 a).

    PubMed  CAS  Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Les phénomènes des pseudopupille dans l’oeil de Drosophila. Kybernetik 9, 159–182 (1971 b).

    PubMed  CAS  Google Scholar 

  • Franceschini, N., Kirschfeld, K.: Le contrôle automatique du flux lumineux dans l’oeil composé des Diptères. Propriétés spectrales, statiques et dynamiques du mécanisme. Biol. Cybern. 21, 181–203 (1976).

    Google Scholar 

  • Frantsevich, L.L, Pichka, V.E.: The size of binocular zone of the visual field in insects. J. Evol. Biochem. Physiol. (USSR) 12, 461–465 (1976).

    CAS  Google Scholar 

  • Friederichs, H.F.: Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindelinen (Col.). Z. Morphol. Ökol. Tiere 21, 1–171 (1931).

    Google Scholar 

  • Friza, F.: Zur Frage der Färbung und Zeichnung des facettierten Insektenauges. Z. vergl. Physiol. 8, 289–336 (1929).

    Google Scholar 

  • Fuge, H.: Die Pigmentbildung im Auge von Drosophila melanogaster und ihre Beeinflussung durch den white-locus. Z. Zellforsch. 83, 468–507 (1967).

    Google Scholar 

  • Gavel, L.von: Die „kritische Streifenbreite“als Maß der Sehschärfe bei Drosophila melanogaster. Z. vergl. Physiol. 27, 80–135 (1939).

    Google Scholar 

  • Gemperlein, R.: Grundlagen zur genauen Beschreibung von Komplexaugen. Z. vergl. Physiol. 65, 428–444(1969).

    Google Scholar 

  • Gemperlein, R., Smola, U.: Übertragungseigenschaften der Sehzelle der Schmeißfliege Calliphora ery-throcephala. 3. Verbesserung des Signal-Störungs-Verhältnisses durch präsynaptische Summation in der Lamina ganglionaris. J. comp. Physiol. 79, 393–409 (1972).

    Google Scholar 

  • Goetz, K.G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).

    Google Scholar 

  • Goetz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968).

    Google Scholar 

  • Goetz, K. G.: Processing of clues from the moving environment in the Drosophila navigation system. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp.255–263. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Goetz, K. G., Wenking, H.: Visual control of locomotion in the walking fruitfly Drosophila. J. comp. Physiol. 85, 235–266 (1973).

    Google Scholar 

  • Gogala, M., Hamdorf, K., Schwemer, J.: UV-Sehfarbstoff bei Insekten. Z. vergl. Physiol. 70, 410–413 (1970).

    Google Scholar 

  • Goldsmith, T.H.: Do flies have a red receptor? J. gen. Physiol. 49, 265–287 (1965).

    PubMed  CAS  Google Scholar 

  • Goldsmith, T.H.: The natural history of invertebrate visual pigments. In: Handbook of sensory physiology, Vol. VII/1 (ed. H.J.A. Dartnall),pp.685–719. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Goldsmith, T.H., Bernard,G.D.: The visual system of insects. In: The physiology of Insecta, Vol. II (ed. M.Rockstein), pp. 165–272. San Francisco: Academic Press 1974.

    Google Scholar 

  • Gribakin, F.G.: Functional morphology of the compound eye of the bee. In: The compound eye and vision of insects (ed. G. A. Horridge), pp. 154–176. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Hamdorf, K.: The physiology of invertebrate visual pigments. In: Handbook of sensory physiology Vol. VII/6A(H. Autrum, ed.). Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  • Hamdorf, K., Langer, H.: Veränderungen der Lichtabsorption im Fazettenauge bei Belichtung. Z. vergl. Physiol. 51, 172–184 (1965).

    Google Scholar 

  • Hamdorf, K., Razmjoo, S.: The prolonged depolarizing afterpotential and its contribution to the understanding of photoreceptor function. Biophys. Struct. Mech. 3, 163–170 (1977).

    PubMed  CAS  Google Scholar 

  • Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol. 86, 281–292(1973).

    Google Scholar 

  • Hamdorf, K., Schwemer, J., Gogala, M.: Insect visual pigment sensitive to ultraviolet light. Nature 231, 458–459(1971).

    PubMed  CAS  Google Scholar 

  • Hamdorf, K., Paulsen, R., Schwemer, J., Täuber, U.: Photoreconversion of invertebrate visual pigments. In: Information processing in the visual systems of arthropods (ed. R. Wehner), pp.97–108. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and physiology of visual pigments (ed. H. Langer), pp.155–166. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Hardie, R.C.: Electrophysiological properties of R7 and R8 in dipteran retina. Z. Naturforsch. 32c, 887–889 (1977).

    Google Scholar 

  • Hardie, R.C.: Peripheral visual function in the fly. Thesis. Canberra 1978.

    Google Scholar 

  • Hardie, R.C., Franceschini, N., McIntyre, P.D.: Electrophysiological analysis of the fly retina. II. Spectral mechanisms in R7 and R8. J. comp. Physiol., in press (1979).

    Google Scholar 

  • Harris, W. A., Stark, W.S.: Hereditary retinal degradation in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J. gen. Physiol. 69, 261–291 (1977).

    PubMed  CAS  Google Scholar 

  • Harris, W.A., Stark, W.S., Walker, J.A.: Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256, 415–439 (1976).

    PubMed  CAS  Google Scholar 

  • Hartline, H.K., Ratliff,F.: Inhibitory interaction in the retina of Limulus. In: Handbook of sensory physiology, Vol.VII/2 (ed. M.G.F. Fuortes), pp.381–447. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31c, 629–633 (1976).

    Google Scholar 

  • Heisenberg, M., Buchner, E.: The rôle of retinula cell types in visual behavior of Drosophila melanogaster. J. comp. Physiol. 117, 127–162 (1977).

    Google Scholar 

  • Hengstenberg, R.: Das Augenmuskelsystem der Stubenfliege Musca domestica. I. Analyse der “clock spikes” und ihrer Quellen. Kybernetik 9, 56–77 (1971).

    PubMed  CAS  Google Scholar 

  • Hillman, P., Hochstein, S., Minke, B.: A visual pigment with two physiologically active stable states. Science 175, 1486–1488 (1972).

    PubMed  CAS  Google Scholar 

  • Hochstein, S., Minke, B., Hillman, P.: Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J. gen. Physiol. 62, 105–128 (1973).

    PubMed  CAS  Google Scholar 

  • Hoglund, G.: Pigment migration and retinular sensitivity. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp.77–88. Oxford: Pergamon Press 1966a.

    Google Scholar 

  • Hoglund, G.: Pigment migration, light screening and receptor sensitivity in the compound eye of nocturnal Lepidoptera. Acta Physiol. Scand. 69 [Suppl. 282] 1–56 (1966 b).

    Google Scholar 

  • Höglund, G., Struwe, G.: Pigment migration and spectral sensitivity in the compound eye of moths. Z. vergl. Physiol. 67, 229–237 (1970).

    Google Scholar 

  • Horridge, G.A.: The retina of the locust. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp.513–541. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Horridge, G. A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969).

    Google Scholar 

  • Horridge, G.A.: Arthropod receptor optics. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.459–478. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Horridge, G. A.: The ommatidium of the dorsal eye of Cloeon as a specialization for photoreisomer-ization. Proc. R. Soc. Lond. B. 193, 17–29 (1976).

    PubMed  CAS  Google Scholar 

  • Horridge, G. A.: The compound eye of insects. Sci. Am. 237, 108–121 (1977 a).

    Google Scholar 

  • Horridge, G. A.: Insects which turn and look. Endeavour 1, 7–17 (1977b).

    Google Scholar 

  • Horridge, G.A., Barnard, P. B. T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. Micr. Sci. 106,131–135 (1965).

    CAS  Google Scholar 

  • Horridge, G.A., Giddings, C, Stange, G.: The superposition eye of skipper butterflies. Proc. R. Soc. Lond.B. 182, 457–195 (1972).

    Google Scholar 

  • Horridge, G. A., McLean, M.: The dorsal eye of the mayfly Atalophlebia (Ephemeroptera). Proc. R. Soc. Lond. B. 200, 137–150 (1978).

    Google Scholar 

  • Horridge, G.A., Meinerzhagen, I. A.: The accuracy of the patterns of connections of the first and second-order neurons of the visual system of Calliphora. Proc. R. Soc. Lond. B. 175, 69–82 (1970).

    PubMed  CAS  Google Scholar 

  • Horridge, G.A., Mimura, K.: Fly photoreceptors. I. Physical separation of two visual pigments in Calliphora retinula cells 1–6. Proc. R. Soc. Lond. B. 190, 211–224 (1975).

    PubMed  CAS  Google Scholar 

  • Horridge, G. A., Mimura, K., Tsukahara, Y.: Fly receptors. II. Spectral and polarized light sensitivity in the dronefly Eristalis. Proc. R. Soc. Lond. B. 190, 225–237 (1975).

    PubMed  CAS  Google Scholar 

  • Kiesel, A.: Untersuchungen zur Physiologie des facettirten Auges. Sitz. Ber. Akad. Wiss. Wien. (Math. Nat.) 103 (3), 97–139(1894).

    Google Scholar 

  • Kirschfeld, K.: Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge von Musca. Kybernetik 2, 249–257 (1965).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Optics of the compound eye. In: Processing of optical data by organisms and by machines (ed. W. Reichardt), pp. 116–136. New York: Academic Press 1969.

    Google Scholar 

  • Kirschfeld, K.: Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwissenschaften 58, 201–209 (1971).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: The visual system of Musca: studies on optics, structure and function. In: Information processing in the visual systems of arthropods (ed. R. Wehner), pp. 61–74. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. Fortschr. Zool. 21, 229–257 (1973 a).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Optomotorische Reaktionen der Biene auf bewegte „Polarisations-Muster“. Z. Naturforsch. 28c, 329–338 (1973 b).

    CAS  Google Scholar 

  • Kirschfeld, K.: The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mech., in press (1979).

    Google Scholar 

  • Kirschfeld, K., Feiler, R., Franceschini, N.: A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. comp. Physiol. 125, 275–284 (1978).

    CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdome-ren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Photostable pigments within the menbrane of photoreceptors and their possible role. Biophys. Struct. Mech. 3, 191–194 (1977).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N., Minke, B.: Evidence for a sensitising pigment in fly photoreceptors. Nature 269, 386–390 (1977).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the fly Musca. Z. Naturforsch. 29c, 95–97(1974).

    CAS  Google Scholar 

  • Kirschfeld, K., Reichardt, W.: Die Verarbeitung stationärer optischer Nachrichten im Komplexauge von Limulus (Ommatidien-Sehfeld und räumliche Verteilung der Inhibition). Kybernetik 2, 43–61 (1964).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Snyder, A. W.: Waveguide mode effects, birefringence and dichroism in fly photoreceptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.56–77. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Kirschfeld, K., Snyder, A. W.: Measurements of a photoreceptor’s characteristic waveguide parameter. Vision Res. 16,775–778 (1976).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Wenk, P.: The dorsal compound eye of simuliid flies: an eye specialized for the detection of small rapidly moving objects. Z. Naturforsch. 31c, 764–765 (1976).

    Google Scholar 

  • Kleinholz, L.H.: Studies in the pigmentary system of Crustacea. II. Diurnal movements of the retinal pigments of Bermudan decapods. Biol. Bull. 72,176–189 (1937).

    Google Scholar 

  • Kolb, G., Autrum, H.: Die Feinstruktur im Auge der Biene bei Hell- und Dunkeladaptation. J. comp. Physiol. 77,113–125 (1972).

    Google Scholar 

  • Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. comp. Physiol. 94,1–6 (1974).

    Google Scholar 

  • Kuiper, J.W.: The optics of the compound eye. In: Biological receptor mechanisms (ed. J.W.L. Beament), Symp. Soc. Exp. Biol., pp. 58–71. London: Cambridge University Press 1962.

    Google Scholar 

  • Kuiper, J.W.: On the image formation in a single ommatidium of the compound eye in Diptera. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp.35–50. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Kunze, P.: Apposition and superposition eyes. In: Handbook of sensory physiology Vol. VII/6A (ed. H. Autrum). Berlin-Heidelberg-New York: Springer 1979.

    Google Scholar 

  • Langer, H.: Über die Pigmentgranula im Facettenauge von Calliphora erythrocephala. Z. vergl. Physiol. 55, 354–377 (1967).

    Google Scholar 

  • Langer, H.: Properties and functions of screening pigments in insect eyes. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), pp. 429–455. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Langer, H., Thoreil, B.: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41, 673–677 (1966).

    PubMed  CAS  Google Scholar 

  • Laughlin, S. B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second-order neurons. J. comp. Physiol. 84, 335–355 (1973).

    Google Scholar 

  • Laughlin, S.B.: Receptor function in the apposition eye—an electrophysiological approach. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.479–498. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Laughlin, S.B., Horridge, G. A.: Angular sensitivity of the retinula cells of dark-adapted worker bee. Z. vergl. Physiol. 74, 329–335 (1971).

    Google Scholar 

  • Laughlin, S. B., McGinness, S.: The structures of dorsal and ventral region of a dragonfly retina. Cell Tissue Res. 188, 427–448 (1978).

    PubMed  CAS  Google Scholar 

  • Leggett, L. M. W.: Polarised light-sensitive interneurons in a swimming crab. Nature 262, 709–711 (1976).

    PubMed  CAS  Google Scholar 

  • Leggett, L.M.W.: Some visual specialisations of a crustacean eye. Thesis, Canberra 1977

    Google Scholar 

  • Levín, L., Maldonado, H.: A fovea in the praying mantis eye. III. The centring of the prey. Z. vergl. Physiol. 67,93–101 (1970).

    Google Scholar 

  • Leydig, F.: Zum feineren Bau der Arthropoden. Müller’s Arch. Anat. Physiol. 406–444 (1855).

    Google Scholar 

  • Leydig, F.: Das Auge der Gliedertiere. Tübingen: Lauppund Siebeck 1864.

    Google Scholar 

  • Leydig, F.: Die Farbe der Retina und das Leuchten der Augen. Arch. Naturg. 43,1–6 (1877).

    Google Scholar 

  • Liebman, P.A.: Microspectrophotometry of photoreceptors. In: Handbook of sensory physiology, Vol. VII/1 (ed. H. J. A. Dartnall), pp.481–528. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Lythgoe, J.N.: List of vertebrate visual pigments. In: Handbook of sensory physiology, Vol. VII/1 (ed. H. J. A. Dartnall), pp.604–624. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Mazokhin-Porshnyakov, G .A.: Colorimetric study of vision in dragonflies. Biophysica 4, 427–436 (1959).

    Google Scholar 

  • Mazokhin-Porshnyakow, G. A.: Insect vision. New York: Plenum Press 1969.

    Google Scholar 

  • McCann, G.D., Dill, J. C.: Fundamental properties of intensity, form and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J. gen. Physiol. 53, 385–413 (1969).

    PubMed  CAS  Google Scholar 

  • McCann, G.D., Foster, S. F.: Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8,193–203 (1971).

    PubMed  CAS  Google Scholar 

  • Meffert, P., Smola, U.: Electrophysiological measurements of spectral sensitivity of central visual cells in eye of blowfly. Nature 260, 342–344 (1976).

    PubMed  CAS  Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).

    Google Scholar 

  • Menzel, R.: Feinstruktur des Komplexauges der roten Waldameise, Formica polyctena (Hymenoptera, Formicidae). Z. Zellforsch. 127, 356–373 (1972 a).

    PubMed  CAS  Google Scholar 

  • Menzel, R.: The fine structure of the compound eye of Formica polyctena — Functional morphology of a hymenopterean eye. In: Information processing in the visual systems of arthropods (ed. R. Wehner), pp. 37–47. Berlin-Heidelberg-New York: Springer 1972b.

    Google Scholar 

  • Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects (ed. G.A. Hor-ridge), pp. 121–153. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Menzel, R., Knaut, R.: Pigment movement during light and chromatic adaptation in the retinula cells of Formica polyctena (Hymenoptera, Formicidae). J. comp. Physiol. 86,125–138 (1973).

    Google Scholar 

  • Menzel, R., Lange, G.: Änderungen der Feinstruktur im Komplexauge von Formica polyctena bei der Helladaptation. Z. Naturforsch. 26b, 357–359 (1971).

    Google Scholar 

  • Meyer-Rochow, V.B.: A crustacean-like organization of insect-rhabdoms. Cytobiologie 4, 241–249 (1971a).

    Google Scholar 

  • Meyer-Rochow, V.B.: Fixierung von Insektenorganen mit Hilfe eines Netzmittels. Das Dorsalauge der Eintagsfliege Atalophlebia costalis. Mikrokosmos 60, 348–351 (1971b).

    Google Scholar 

  • Meyer-Rochow, V.B., Nässel, D.R.: Crustacean eyes and polarization sensitivity. Vision Res. 17,1239–1240(1977).

    PubMed  CAS  Google Scholar 

  • Miller, W.H.: Mechanisms of photomechanical movement. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp.415–428. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Miller, W.H.: Ocular optical filtering. In: Handbook of sensory physiology, Vol. VII/6A (ed. H. Au-trum). Berlin-Heidelberg-New York: Springer 1979.

    Google Scholar 

  • Miller, W.H., Bernard, G. D.: Butterfly glow. J. Ultrastruct. Res. 24,286–294 (1968).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Cawthon, D. F.: Pigment granule movement in Limulus photoreceptors. Invest. Ophthalmol. 13,401–405(1974).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G.D., Allen, J. L.: The optics of insect compound eyes. Science 162, 760–767 (1968).

    PubMed  CAS  Google Scholar 

  • Minke, B., Hochstein, S., Hillman, P.: Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. J. Gen. Physiol. 62,787–791 (1973).

    PubMed  CAS  Google Scholar 

  • Minke, B., Wu, C.-F., Pak, W.L.: Isolation of light induced response of the central retinula cells from the electroretinogram of Drosophila. J. comp. Physiol. 98, 345–355 (1975).

    Google Scholar 

  • Muijser,H., Stavenga, D. G.: Rapid photopigment conversions in blowfly visual sense cells. Consequences for receptor potential and pupillary response. Biophys. Struct. Mech., in press (1979).

    Google Scholar 

  • Muijser, H., Leutscher-Hazelhoff, J.T., Stavenga, D.G., Kuiper, J.W.: Photopigment conversions expressed in receptor potential and membrane resistance of blowfly visual sense cells. Nature 254, 520–522(1975).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J.E.: Ultraviolet-induced sensitivity to visible light in ultraviolet receptors of Limulus. J. Gen. Physiol. 59,186–200 (1972).

    PubMed  CAS  Google Scholar 

  • Ostroy, S.E., Wilson, M., Pak, W.L.: Drosophila rhodopsin: photochemistry, extraction and differences in the norp Ap12 phototransduction mutant. Biochem. Biophys. Res. Commun. 59, 960–966 (1974).

    PubMed  CAS  Google Scholar 

  • Page, T. L., Larimer, J. L.: Neural control of circadian rhythmicity in the crayfish. II. The ERG amplitude rhythm. J. comp. Physiol. 97, 81–96 (1975).

    Google Scholar 

  • Pak, W.L., Pinto, L.H.: Genetic approach to the study of the nervous system. Ann. Rev. Biophys. Bioeng. 5, 397–448(1976).

    CAS  Google Scholar 

  • Pak, W.L., Ostroy, S.E., Deland, M.C, Wu, C.-F.: Photoreceptor mutant of Drosophila: Is protein involved in intermediate steps of phototransduction? Science 194,956–959 (1976).

    CAS  Google Scholar 

  • Parker, G.H.: The movement of the retinal pigment. Ergeb. Biol. 9,239–291 (1932).

    Google Scholar 

  • Pick, B.: Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies. Biol. Cybern. 26,215–224 (1977).

    Google Scholar 

  • Poggio, T., Reichhardt, W.: Visual control of orientation behaviour in the fly. Part. II. Towards the underlying neural interactions. Q. Rev. Biophys. 9, 377–438 (1976).

    CAS  Google Scholar 

  • Portillo, J.del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. vergl. Physiol. 23,100–145 (1936).

    Google Scholar 

  • Ratliff, F.: Selective adaptation of local regions of the rhabdom in an ommatidium of the compound eye of Limulus. In: The functional organization of the compound eye (ed. C. G. Bernhard), pp. 187–191. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Ratliff, F., Hartline, H.K., Lange, D.: The dynamics of lateral inhibition in the compound eye of Limulus. I. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp. 399–424. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Razmjoo, S., Hamdorf, K.: Visual sensitivity and the variation of total pigment content in the blowfly photoreceptor membrane. J. comp. Physiol. 105,279–286 (1976).

    Google Scholar 

  • Reichardt, W.: First steps in a behavioral analysis of pattern discrimination in Diptera. In: Information processing in the visual systems of arthropods (ed. R. Wehner), pp.213–215. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Ribi, W. A.: Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepi-doptera, Pieridae). Cell Tiss. Res. 191, 57–73 (1978).

    CAS  Google Scholar 

  • Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol. 102, 269–295 (1975).

    Google Scholar 

  • Schneider, L., Langer, H.: Die Struktur des Rhabdoms im „Doppelauge“des Wasserläufers Gerris lacustris. Z. Zellforsch. 99, 538–559 (1969).

    CAS  Google Scholar 

  • Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6,149–162 (1969).

    PubMed  CAS  Google Scholar 

  • Schwemer, J., Paulsen, R.: Three visual pigments in Deilephila elpenor (Lepidoptera, Sphingidae). J. comp. Physiol. 86,215–229 (1973).

    CAS  Google Scholar 

  • Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig.). Z. vergl. Physiol. 59,205–231 (1968).

    Google Scholar 

  • Seitz, G.: Nachweis einer Pupillenreaktion im Auge der Schmeißfliege. Z. vergl. Physiol. 69, 169–185 (1970).

    Google Scholar 

  • Seitz, G., Burkhardt, D.: Bau und optische Leistungen des Komplexauges der Stielaugenfliege Cyrto-diopsis dalmanni Wiedemann. J. comp. Physiol. 95,49–59 (1974).

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9,999–1029 (1969).

    PubMed  CAS  Google Scholar 

  • Sherk, T.E.: Development of the compound eye of dragonflies (Odonata). I. Larval compound eyes. J. Exp. Zool. 201, 391–416 (1977).

    Google Scholar 

  • Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). II. Development of the larval compound eyes. J. Exp. Zool. 203,47–60 (1978 a).

    PubMed  CAS  Google Scholar 

  • Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. Exp. Zool. 203,61–80 (1978 b).

    PubMed  CAS  Google Scholar 

  • Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). IV. Development of the adult compound eyes. J. Exp. Zool. 203,183–200 (1978 c).

    PubMed  CAS  Google Scholar 

  • Smith, R.I.: The role of the sinus glands in retinal pigment migration in grapsoid crabs. Biol. Bull. 95, 169–185(1948).

    PubMed  CAS  Google Scholar 

  • Smola, U., Meffert, P.: The spectral sensitivity of the visual cells in the eye of the blowfly Calliphora erythrocephala. J. comp. Physiol, in press (1979).

    Google Scholar 

  • Snyder, A. W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol. 83, 231–360 (1973).

    Google Scholar 

  • Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects (ed. G. A. Horridge), pp. 179–235. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Snyder, A. W.: The physics of vision in compound eyes. In: Handbook of sensory physiology Vol. VII/6 A (H. Autrum, ed.), this volume. Berlin-Heidelberg-New York: Springer 1979.

    Google Scholar 

  • Snyder, A.W., Horridge, G. A.: The optical function of changes in the medium surrounding the cockroach rhabdom. J. comp. Physiol. 81,1–8 (1972).

    Google Scholar 

  • Snyder, A.W., Menzel, R. (eds.): Photoreceptor optics. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S. B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87,99–135(1973).

    Google Scholar 

  • Snyder, A. W., Laughlin, S.B., Stavenga, D.G.: Information capacity of eyes. Vision Res. 17, 1163 – 1175 (1977 a).

    PubMed  CAS  Google Scholar 

  • Snyder, A. W., Stavenga, D.G., Laughlin, S. B.: Spatial information capacity of compound eyes. J. comp. Physiol. 116,183–207 (1977b).

    Google Scholar 

  • Stark, W. S.: Sensitivity and adaptation in R7, an ultraviolet photoreceptor, in the Drosophila retina. J. comp. Physiol. 115,47–59 (1977).

    Google Scholar 

  • Stark, W.S., Zitzmann, W. G.: Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation in Drosophila. J. comp. Physiol. 105,15–27 (1976).

    CAS  Google Scholar 

  • Stark, W.S., Ivanyshyn, A.M., Greenberg, R.M.: Sensitivity and photopigments of Rl-6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca. J. comp. Physiol. 121,289–305 (1977).

    CAS  Google Scholar 

  • Stavenga, D. G.: Visual receptor optics, rhodopsin and pupil in fly retinula cells. Thesis, Groningen 1974 a.

    Google Scholar 

  • Stavenga, D. G.: Refractive index of fly rhabdomeres. J. comp. Physiol. 91,417–426 (1974 b).

    Google Scholar 

  • Stavenga, D.G.: Optical qualities of the fly eye — An approach from the side of geometrical, physical, and waveguide optics. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), pp.126–144. Berlin-Heidelberg-New York: Springer 1975 a.

    Google Scholar 

  • Stavenga, D.G.: The neural superposition eye and its optical demands. J. comp. Physiol. 102, 297 – 304 (1975 b).

    Google Scholar 

  • Stavenga, D.G.: Visual adaptation in butterflies. Nature 254,435–437 (1975 c).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G.: Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem. Photobiol. 21,105–110 (1975 d).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G.: Waveguide modes and refractive index in photoreceptors of invertebrates. Vision Res. 15,323–330 (1975 e).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G.: Dark regeneration of invertebrate visual pigments. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 290–295. Berlin-Heidelberg-New York: Springer 1975 f.

    Google Scholar 

  • Stavenga, D.G.: Fly visual pigments. Difference in visual pigments of blowfly and dronefly peripheral retinula cells. J. comp. Physiol. 111, 137–152 (1976).

    CAS  Google Scholar 

  • Stavenga, D.G.: Optics of compound eyes and circadian pigment movements studied by pseudopupil observations in vivo. Biol. Bull. 153,446 (1977).

    Google Scholar 

  • Stavenga, D.G.: Visual pigment processes and prolonged pupillary responses in insect photoreceptor cells. Biophys. Struct. Mech., in press (1979).

    Google Scholar 

  • Stavenga, D.G., Barneveld, H. H. van: On dispersion in visual photoreceptors. Vision Res. 15, 1091 – 1095 (1975).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G., Beersma, D.G.M: Formalism for the neural network of visual systems. Biol. Cybern. 19, 75–81 (1975).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G., Kuiper J.W.: Insect pupil mechanisms. I. On the pigment migration in the retinula cells of Hymenoptera (suborder Apocrita). J. comp. Physiol. 113, 55–72 (1977).

    Google Scholar 

  • Stavenga, D.G., Zantema, A., Kuiper J. W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments (ed. H. Langer), pp.175–180. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Stavenga, D.G., Flokstra, J.H., Kuiper, J.W.: Photopigment conversions expressed in pupil mechanisms of blowfly visual sense cells. Nature 253, 740–742 (1975).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G., Numan J.A.J., Tinbergen, J., Kuiper, J.W.: Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J. comp. Physiol. 113, 73–93 (1977).

    Google Scholar 

  • Stowe, S., Leggett, M: Retina-lamina connectivity and polarization sensitivity in Crustacea. Vision Res. 18,1087 (1978).

    PubMed  CAS  Google Scholar 

  • Strausfeld, N. J.: The organization of the insect visual system (light microscopy). II. The projection of fibers across the first optic chiasma. Z. Zellforsch. 121,442–454 (1971).

    Google Scholar 

  • Strausfeld, N. J.: Atlas of an insect brain. Berlin-Heidelberg-New York: Springer 1976a.

    Google Scholar 

  • Strausfeld, N.J.: Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural principles in vision (eds. F. Zettler, R. Weiler), pp. 245–279. Berlin-Heidelberg-New York: Springer 1976 b.

    Google Scholar 

  • Swihart, S. L.: Acceptance angles of butterfly ommatidia. J. Insect Physiol. 20, 1027–1036 (1974).

    PubMed  CAS  Google Scholar 

  • Trujillo-Cenóz, O.: The structural organization of the compound eye in insects. In: Handbook of sensory physiology, Vol.VII/2 (éd. M.G.F. Fuortes), pp.5–61. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Trujillo-Cenóz, O., Bernard, G.D.: Some aspects of the retinal organization of Sympycnus lineatus Loew (Diptera, Dolichopodidae). J. Ultrastruct. Res. 38,149–160 (1972).

    PubMed  Google Scholar 

  • Tsukahara, Y., Horridge, G.A.: Visual pigment spectra from sensitivity measurements after chromatic adaptation of single fly retinula cells. J. comp. Physiol. 114,233–251 (1977).

    Google Scholar 

  • Tunstall, J., Horridge, G.A.: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55,167–182 (1967).

    Google Scholar 

  • Via, E.: Visually mediated snapping in the bulldog ant: a perceptual ambiguity between size and distance. J. comp. Physiol. 121, 33–51 (1977).

    Google Scholar 

  • Vogt, K.: Optics of the crayfish eye. Z. Naturforsch. 30c, 691 (1975).

    CAS  Google Scholar 

  • Vries, Hl.de: Physical aspects of the sense organs. Prog. Biophys. 6,207–264 (1956).

    Google Scholar 

  • Vries, Hl.de, Kuiper J.W.: Optics of the insect eye. Ann. NY Acad. Sci. 74,196–203 (1958).

    Google Scholar 

  • Walcott, B.: Unit studies on light-adaptation in the retina of the crayfish, Cherax destructor. J. comp. Physiol. 94,207–218 (1974).

    Google Scholar 

  • Walcott, B.: Anatomical changes during light-adaptation in insect compound eyes. In: The compound eye and vision of insects (ed. G. A. Horridge), pp.20–33. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Wallace, G.K.: Visual scanning in the desert locust Schistocerca gregaria Forskâl. J. exp. Biol. 36, 512–525(1959).

    Google Scholar 

  • Washizu, Y., Burkhardt, D., Streck, P.: Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala. Z. vergl. Physiol. 48, 413–428 (1964).

    Google Scholar 

  • Waterman, T.H.: Directional sensitivity of single ommatidia in the compound eye of Limulus. Proc. Nat. Acad. Sci. (Wash.) 40,252–257 (1954).

    CAS  Google Scholar 

  • Waterman, T. H.: Light sensitivity and vision. In: The physiology of Crustacea, Vol. II (ed. T.H. Waterman), pp. 1–64. New York: Academic Press 1961.

    Google Scholar 

  • Waterman, T. H.: The optics of polarization sensitivity. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 339–371. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Waterman, T.H., Fernández, H. R.: E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z. vergl. Physiol. 68,154–174 (1970).

    Google Scholar 

  • Waterman, T. H., Horch, K.W.: Mechanism of polarized light perception. Science 154, 467–475 (1966).

    PubMed  CAS  Google Scholar 

  • Wehner, R.: Pattern recognition. In: The compound eye and vision of insects (ed. G.A. Horridge), pp.75–113. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Wehner, R.: Structure and function of the peripheral visual pathway in hymenopterans. In: Neural principles in vision (eds. F. Zettler, R. Weiler), pp.280–333. Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  • Wehrhahn, C: Evidence for the role of retinal receptors R7/8 in the orientation behaviour of the fly. Biol. Cybern. 21,213–220 (1976).

    Google Scholar 

  • Welsh, J.H.: Diurnal rhythm of the distal pigment cells in the eyes of certain crustaceans. Proc. Natl. Acad. Sci. (USA) 16, 386–395 (1930).

    CAS  Google Scholar 

  • Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. vergl. Physiol. 49, 526–542 (1965).

    Google Scholar 

  • Wigglesworth, V.B.: The principles of insect physiology. London: Chapman and Hall 1972.

    Google Scholar 

  • Wilson, M.: Angular sensitivity of light and dark adapted locust retinula cells. J. comp. Physiol. 97, 323–328 (1975).

    Google Scholar 

  • Wolburg-Buchholz, K.: The superposition eye of Cloeon dipterum: The organization of the lamina ganglionaris. Cell Tissue Res. 77,9–28 (1977).

    Google Scholar 

  • Wright, R., Cosens, D.: Blue-adaptation and orange-adaptation in white-eyed Drosophila: evidence that the prolonged afterpotential is correlated with the amount of M 580 in Rl-6. J. comp. Physiol. 113, 105–128 (1977).

    Google Scholar 

  • Yagi, N., Koyama, N.: The compound eye of Lepidoptera. Tokyo: Shinkyo Press 1963.

    Google Scholar 

  • Zaagman, W.H., Mastebroek, H. A. K., Buyse, T., Kuiper, J.W.: Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. comp. Physiol. 116, 39–50(1977).

    Google Scholar 

  • Zimmermann, K.: Über die Facettenaugen der Libelluliden, Phasmiden und Mantiden. Zool. Jb. (Anat. Ontog.) 37,1–36 (1914).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Stavenga, D.G. (1979). Pseudopupils of Compound Eyes. In: Autrum, H. (eds) Comparative Physiology and Evolution of Vision in Invertebrates. Handbook of Sensory Physiology, vol 7 / 6 / 6 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66999-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66999-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67001-5

  • Online ISBN: 978-3-642-66999-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics