Skip to main content

Extended —10 Promoters

  • Chapter
Mechanisms of Transcription

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

E. coli RNA polymerase (RNAP) is a multisubunit enzyme with a molecular mass of nearly half a million. The major form of RNAP in cells consists of core enzyme (subunit composition ββ′α2) in complex with the σ70 factor. σ70 is 613 amino acids in length: sequence comparisons show that it shares four regions of amino acid sequence similarity with other σ factors (regions 1, 2, 3 and 4: Fig. 1; Gross et al. 1992). It has long been known that RNAP containing σ70, is competent to initiate transcription at many promoters in the absence of any activator protein and that the σ70 subunit is essential for recognition of these promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Backendorf C, Brandsma J, Kartasova T, van de Putte P (1983) In vivo regulation of the uvrA gene: role of -10 and -35 promoter regions. Nucleic Acids Res 11:5795–5810

    Article  PubMed  CAS  Google Scholar 

  • Barne K, Bown J, Busby S, Minchin S (1997) Region 2.5 of the RNA polymerase σ70 subunit is responsible for the recognition of the “extended - 10 motif” at promoters. EMBO J. in the press

    Google Scholar 

  • Belyaeva T, Griffiths L, Minchin S, Cole J, Busby S (1993) The Escherichia coli cysG promoter belongs to the “extended -10” class of bacterial promoters. Biochem J 296:851–857

    CAS  Google Scholar 

  • Bingham A, Ponnambalam S, Chan B, Busby S (1986) Mutations that reduce expression from the P2 promoter of the Escherichia coli galactose operon. Gene 41:67–74

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Cate R, Perlmutter A (1982) Precise location of two promoters for the β lactamase gene of pBR322. J Biol Chem 257:9205–9210

    PubMed  CAS  Google Scholar 

  • Burns H (1996) Factors affecting open complex formation by Escherichia coli RNA polymerase. PhD Thesis, University of Birmingham, Birmingham

    Google Scholar 

  • Burns H, Minchin S (1994) Thermal energy requirement for strand separation during transcription initiation: the effect of supercoiling and extended protein DNA contacts. Nucleic Acids Res 22:3840–3845

    Article  PubMed  CAS  Google Scholar 

  • Burns H, Belyaeva T, Busby S, Minchin S (1996) Temperature dependence of open complex formation at two E. coli promoters with extended -10 sequences. Biochem J 317:305–311

    PubMed  CAS  Google Scholar 

  • Busby S, Spassky A, Chan B (1987) RNA polymerase makes important contacts upstream from base pair -49 at the Escherichia coli galactose operon P1 promoter. Gene 53:145–152

    Article  PubMed  CAS  Google Scholar 

  • Chan B, Busby S (1989) Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. Gene 84:227–236

    Article  PubMed  CAS  Google Scholar 

  • Chan B, Spassky A, Busby S (1990) The organisation of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus -35 region sequences. Biochem J 270:141–148

    PubMed  CAS  Google Scholar 

  • Dombroski A, Walter W, Record T, Siegele D, Gross C (1992) Polypeptides containing highly conserved regions of transcription initiation factor σ70 exhibit specificity of binding to promoter DNA. Cell 70:510–512

    Article  Google Scholar 

  • Graves M, Rabinowitz J (1986) In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for “extended” promoter elements in gram-positive organisms. J Biol Chem 261:11409–11415

    PubMed  CAS  Google Scholar 

  • Grimes E, Busby S, Minchin S (1991) Different thermal energy requirement for open complex formation by Escherichia coli RNA polymerase at two related promoters. Nucleic Acids Res 19:6113–6118

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Lonetto M, Losick R (1992) Bacterial sigma factors. In: McKnight S, Yamamoto K (eds) Transcriptional regulation, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 129–176

    Google Scholar 

  • Harley C Reynolds R (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361

    Article  Google Scholar 

  • Hawley D, McClure W (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Article  PubMed  CAS  Google Scholar 

  • Hellinga H, Evans P (1985) Nucleotide sequence and high level expression of the major Escherichia coli phosphofructokinase. Eur J Biochem 149:363–373

    Article  PubMed  CAS  Google Scholar 

  • Helmann J (1995) Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360

    Article  PubMed  CAS  Google Scholar 

  • Hinton D, March-Amegadzie R, Gerber J, Sharma M (1996) Characterisation of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 Mot A activator and the T4 AsiA protein, a σ 70 binding protein, in the formation of the open complex. J Mol Biol 256:235–248

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi K, Furukawa H, Nakamura K, Mizushima S (1984) Characterisation by deletion mutagenesis in vitro of the promoter region of ompF. J Mol Biol 178:653–668

    Article  PubMed  CAS  Google Scholar 

  • Johnston F, Ponnambalam S, Busby S (1987) Binding of Escherichia coli RNA polymerase to a promoter carrying mutations that stop transcription initiation. J Mol Biol 195:745–748

    Article  PubMed  CAS  Google Scholar 

  • Keilty S, Rosenberg M (1987) Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262:6389–6395

    PubMed  CAS  Google Scholar 

  • Kumar A, Malloch R, Fujita N, Smillie D, Ishihama A, Hayward R (1993) The –35 recognition region of Escherichia coli σ70 is inessential for initiation of transcription at an “extended minus 10” promoter. J Mol Biol 232:406–418

    Article  PubMed  CAS  Google Scholar 

  • Lisser S, Margalit H (1993) Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • McClure W (1985) Mechanism and control of transcription initiation in procaryotes. Annu Rev Biochem 54:171–204

    Article  PubMed  CAS  Google Scholar 

  • Minchin S, Busby S (1993) Location of close contacts between Escherichia coli RNA polymerase and guanine residues at promoters either with or without consensus - 35 region sequences. Biochem J 289:771–775

    PubMed  CAS  Google Scholar 

  • Musso R, diLauro R, Adhya S, de Crombrugghe R (1977) Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein and two interspersed promoters. Cell 12:847–854

    Article  PubMed  CAS  Google Scholar 

  • Ponnambalam S, Webster C, Bingham A, Busby S (1986) Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal -35 region sequences. J Biol Chem 261:16043–16048

    PubMed  CAS  Google Scholar 

  • Ponnambalam S, Chan B, Busby S (1988) Functional analysis of different sequence elements in the Eschericia coli galactose operon P2 promoter. Mol Microbiol 2:165–172

    Article  PubMed  CAS  Google Scholar 

  • Ross W, Gosink K, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse R (1993) A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 262:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Sabelnikov A, Greenberg B, Lacks S (1995) An extended –10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae J. Mol Biol 250:144–155

    Article  PubMed  CAS  Google Scholar 

  • Voskuil M, Voepel K, Chambliss G (1995) The –16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. Mol Microbiol 17:271–279

    Article  PubMed  CAS  Google Scholar 

  • Yura T (1996) Regulation and conservation of the heat shock transcription factor σ32. Genes Cells 1:277–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bown, J.A., Barne, K.A., Minchin, S.D., Busby, S.J.W. (1997). Extended —10 Promoters. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics