Skip to main content

Kinetics of Petroleum Formation and Cracking

  • Chapter
Petroleum and Basin Evolution

Abstract

One of the most fundamental problems in basin modeling as related to petroleum exploration is assessing the temporal and spatial limits of petroleum generation in sedimentary basins. It is well known that petroleum is generated from macromolecular sedimentary organic matter as it thermally degrades upon burial. The multitude of chemical reactions involved are unknown in detail (Philippi 1965; Welte 1965) but are recognized to be quasi-irreversible Suck and Karweil 1955; Hanbaba and Jüntgen 1969; Tissot 1969). The organic components of subsiding sedimentary rocks are generally far away from thermodynamic equilibrium (Dayhoff et al. 1967; Tackach et al.1987). Consequently, the formation of oil and gas in nature is controlled by chemical reaction kinetics, in particular by non-isothermal kinetics because temperature changes as a function of time under geological conditions (Tissot and Espitalié 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andreev PF, Bogomolov AI, Dobrayanskii AF, Kartsev AA (1968) Transformation of petroleum in nature. Pergamon Press, London

    Google Scholar 

  • Andresen P, Mills N, Schenk HJ, Horsfield B (1993) The importance of kinetic parameters in modelling oil and gas generation - a case study in 1-D from well 2/4-14. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Ø (eds) Basin modelling: advances and applications. Norwegian Petroleum Society (NPF) Spec Pubi 3. Elsevier, Amsterdam, pp 563–571

    Google Scholar 

  • Bailey NJL, Evans CR, Milner CWD (1974) Applying petroleum geochemistry to search for oil: examples from Western Canada Basin. Bull Am Assoc Petrol Geol 58: 2284–2294

    Google Scholar 

  • Bamford CH, Tipper CFH (1969) Comprehensive chemical kinetics, vol 2. The theory of kinetics. Elsevier, Amsterdam

    Google Scholar 

  • Barth T, Borgund AE, Hopland AL (1989) Generation of organic compounds by hydrous pyrolysis of Kimmeridge oil shale. Bulk results and activation energy calculations. Org Geochem 14: 69–76

    Google Scholar 

  • Béhar F, Vandenbroucke M (1986) Représentation chimique de la structure des kérogènes et des asphaltènes en fonction de leur origine et de leur degré d’évolution. Rev Inst Fr Pét 41: 173–188

    Google Scholar 

  • Béhar F, Ungerer P, Kressmann S, Rudkiewicz JL (1991) Thermal evolution of crude oils in sedimentary basins: experimental simulation in a confined system and kinetic modeling. Rev Inst Fr Pét 46: 151–181

    Google Scholar 

  • Boudou JP, Espitalié J (1995) Molecular nitrogen from coal pyrolysis. Kinetic modelling. In: Rice D, Schoell M (eds) Sources of natural gas formation. Chem Geol 126: 319–333

    Google Scholar 

  • Boudou JP, Durand B, Oudin JL (1984) Diagenetic trends of a Tertiary low-rank coal series. Geochim Cosmochim Acta 48: 2005–2010

    Google Scholar 

  • Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1: 153–161

    Google Scholar 

  • Braun RL, Burnham AK (1990) Mathematical model of oil generation, degradation and expulsion. Energy Fuels 4: 132–146

    Google Scholar 

  • Braun RL, Burnham AK, Reynolds JG, Clarkson JE (1991) Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy Fuels 5: 192–204

    Google Scholar 

  • Brooks JD, Hesp WR, Rigby D (1971) The natural conversion of oil to gas in sediments in the Cooper Basin. APEA J 11: 121–125

    Google Scholar 

  • Burlingame AL, Haug PA, Schnoes HK, Simoneit BR (1969) Fatty acids derived from the Green River Formation Oil Shale by extractions and oxidations — a review. In: Schenk PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, Oxford, pp 85–129

    Google Scholar 

  • Burnham AK (1990) Pyrolysis kinetics and composition for Posidonia Shale. Rep UCRL-1D-105871, Lawrence Livermore National Laboratory, 12 pp

    Google Scholar 

  • Burnham AK (1991) Oil evolution from a self-purging reactor: kinetics and composition at 2 °C/min and 2 °C/h. Energy Fuels 5: 205–214

    Google Scholar 

  • Burnham AK, Braun RL (1990) Development of a detailed model of petroleum formation, destruction and expulsion from lacustrine and marine source rocks. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 27–39

    Google Scholar 

  • Burnham AK, Braun RL, Gregg HR (1987) Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels 1: 452–458

    Google Scholar 

  • Burnham AK, Braun RL, Samoun AM (1988) Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 839–845

    Google Scholar 

  • Campbell JH, Gallegos G, Gregg M (1980) Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel 59: 727–732

    Google Scholar 

  • Castelli A, Chiaramonte MA, Beltrame PL, Carniti P, Del Bianco A, Stroppa F (1990) Thermal degradation of kerogen by hydrous pyrolysis. A kinetic study. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 75–82

    Google Scholar 

  • Claypool GE, Mancini EA (1989) Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama. Bull Am Assoc Petrol Geol 73: 904–924

    Google Scholar 

  • Connan J (1974) Time-temperature relation in oil genesis. AAPG Bull 58: 2516–2521

    Google Scholar 

  • Connan J, LeTran K, van der Weide BM (1975) Alteration of petroleum in reservoirs. Proc 9th World Petroleum Congr, Tokyo, vol 2, pp 171–178

    Google Scholar 

  • Cooles GP, Mackenzie AS, Quigley TM (1986) Calculation of petroleum masses generated and expelled from source rocks. In: Leythaeuser D, Rullkotter J (eds) Advances in organic geochemisrtry 1985. Org Geochem 10:235–245

    Google Scholar 

  • Cornford C, Morrow J A, Turrington A, Miles J A, Brooks J (1983) Some geological controls on oil composition in the U.K. North Sea. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 175–194

    Google Scholar 

  • Dayhoff MO, Lippincott ER, Eck RV, Nagarajan G (1967) Thermodynamic equilibrium in prebiological atmospheres of C,H,O,N,P,S and CI. Rep NASA SP-3040, National Biomedical Research Foundation, Silver Spring, Maryland, 259 pp

    Google Scholar 

  • di Primio R (1995) The generation and migration of sulphur rich petroleums in a low maturity carbonate source rock sequence from Italy. PhD Thesis,University of Cologne

    Google Scholar 

  • Dominé F (1991) High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane. Is pressure an important geochemical parameter. Org Geochem 17: 619–634

    Google Scholar 

  • Düppenbecker S, Horsfield B (1990) Compositional information for kinetic modelling and petroleum type prediction. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 259–266

    Google Scholar 

  • Düppenbecker SJ, Dohmen L, Welte DH (1991) Numerical modelling of petroleum expulsion in two areas of the Lower Saxony Basin, (northern Germany). In: England WA, Fleet A (eds) Proc of the Meet on Petroleum migration, Geol Soc Lond, Spec Publ 59, pp 47–64

    Google Scholar 

  • Durand B (1985) Diagenetic modification of kerogens. Philos Trans R Soc Lond A 315: 77–90

    Google Scholar 

  • Espitalié J, Ungerer P, Irwin H, Marquis F (1988) Primary cracking of kerogen. Experimenting and modeling C1, C2-C5, C6-C15 and C15+ classes of hydrocarbons formed. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 839–845

    Google Scholar 

  • Espitalie J, Margues F, Drouet S (1993) Critical study of kinetic modelling parameters. In: Dore AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Ø (eds) Basin modelling, advances and applications. Norwegian Petroleum Society (NPF) Spec Publ 3. Elsevier, Amsterdam, pp 233– 242

    Google Scholar 

  • Esser W, Schwochau K (1991) Evolution of individual hydrocarbons (C1–C4) by non-isothermal pyrolysis of petroleum source rocks. J Anal Appl Pyrolysis 22: 61–71

    Google Scholar 

  • Evamy BD, Harembourne, Kamerling P, Knapp WA, Molloy FA, Rowlands PH (1978) Hydrocarbon habitat of Tertiary Niger Delta. Bull Am Assoc Petrol Geol 62: 1–39

    Google Scholar 

  • Evans CR, Staplin FL (1972) Regional facies of organic metamorphism. CIM Spec Vol 11: 517–521

    Google Scholar 

  • Eyring H (1935a) The activated complex in chemical reactions. J Chem Phys 3: 107–120

    Google Scholar 

  • Eyring H (1935b) The activated complex and the absolute rate of chemical reactions. Chem Rev 17: 65–82

    Google Scholar 

  • Fabuss BM, Duncan DA, Satterfield CN (1964) Thermal cracking of pure saturated hydrocarbons. Adv Pet Chem Refining 3: 156–201

    Google Scholar 

  • Forbes PL, Ungerer PM, Kuhfuss AB, Riss F, Eggen S (1991) Compositional modeling of petroleum generation and expulsion. Application to a local mass balance in the Smorbukk Sor field, Haltenbanken area, Norway. AAPG Bull 75: 873–893

    Google Scholar 

  • Freund H, Kelenen SR (1989) Low–temperature pyrolysis of Green River kerogen. AAPG Bull 73: 1011–1017

    Google Scholar 

  • Gregg ML, Campbell JH, Taylor JR (1981) Laboratory and modelling investigation of a Colorado oil shale block heated to 900 °C. Fuel 60: 179–188

    Google Scholar 

  • Hanbaba P, Jüntgen H (1969) Zur Übertragbarkeit von Laboratoriums-Untersuchungen auf geochemische Prozesse der Gasbildung aus Steinkohle und über den Einfluβ von Sauerstoff auf die Gasbildung. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, Oxford, pp 459–471

    Google Scholar 

  • Hanbaba P, Jüntgen H, Peters W (1968) Nicht–isotherme Reaktionskinetik der Kohlepyrolyse. Teil II: Erweiterung der Theorie des Gasabspaltung und experimentelle Bestätigung an Steinkohlen. Brennstoff–Chemie 49: 368–376

    Google Scholar 

  • Hinshelwood CN (1927) On the theory of unimolecular reactions. Proc R Soc (A) 113: 230–233

    Google Scholar 

  • Hoering TC, Abelson PH (1963) Hydrocarbons from kerogen. Carnegie Inst Wash Year Book 62: 229–234

    Google Scholar 

  • Holmquest HJ (1965) Deep pays in Delaware and Val Verde Basins. In: Young A, Galley JE (eds) Fluids in sub-surface environments. AAPG Mem 4: 257–279

    Google Scholar 

  • Horsfield B, Düppenbecker SJ (1991) The decomposition of Posidonia Shale and Green River Shale kerogens using microscale sealed vessel (MSSV) pyrolysis. J Anal Appi Pyrol 20:107–123

    Google Scholar 

  • Horsfield B, Disko U, Leistner F (1989) The microscale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78: 361–374

    Google Scholar 

  • Horsfield B, Schenk HJ, Mills N, Welte DH (1992) An investigation of the in-reservoir coversion of oil to gas: compositional and kinetic findings from closed-system programmed- temperature pyrolysis. In: Eckardt CB, Maxwell JR, Larter SR, Manning DAC (eds) Advances in organic geochemistry 1991. Org Geochem 19: 191–204

    Google Scholar 

  • Horsfield B, Düppenbecker SJ, Schenk HJ, Schaefer RG (1993) Kerogen typing concepts designed for the quantitative geochemical evaluation of petroleum potential. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Ø (eds) Basin modelling; advances and applications. Norwegian Petroleum Society (NPF) Spec Pubi 3. Elsevier, Amsterdam, pp 243–249

    Google Scholar 

  • Horsfield B, Curry DJ, Bohacs K, Littke R, Rullkötter J, Schenk HJ, Radke M, Schaefer RG, Carroll AR, Isaksen G, Witte EG (1994) Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River formation of the Washakie Basin, Wyoming, USA. In: Telnaes N, van Graas G, Øygard K (eds) Advances in organic geochemisrtry 1993. Org Geochem 22: 415–440

    Google Scholar 

  • Huck G and Karweil J (1955) Physikalisch-chemische Probleme der Inkohlung. Brennstoff- Chemie 36: 1–11

    Google Scholar 

  • Hunt JM, Lewan MD, Hennet RJ-C (1991) Modeling oil generation with time-temperature index graphs based on the Arrhenius equation. AAPG Bull 75: 795 –807

    Google Scholar 

  • Issler DR, Snowdon LR (1990) Hydrocarbon generation kinetics and thermal modelling, Beaufort-MacKenzie basin. Bull Can Petrol Geol 38: 1–16

    Google Scholar 

  • Jarvie DM (1991) Factors affecting Rock–Eval derived kinetic parameters. Chem Geol 93: 7–99

    Google Scholar 

  • Jüntgen H (1964) Reaktionskinetische Überlegungen zur Deutung von Pyrolyse-Reaktionen. Erdöl Kohle-Erdgas-Petrochem 17: 180–186

    Google Scholar 

  • Jüntgen H (1984) Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal. Fuel 63: 731–737

    Google Scholar 

  • Jüntgen H, Klein J (1975) Entstehung von Erdgas aus kohligen Sedimenten. Erdöl Kohle-Erdgas-Petrochem 28: 65–73

    Google Scholar 

  • Jüntgen H, van Heek KH (1968) Gas release from coal as a function of the rate of heating. Fuel 47: 103–117

    Google Scholar 

  • Jüntgen H, van Heek KH (1969) Fortschritte der Forschung auf dem Gebiet der Steinkohlenpyrolyse. Brennstoff-Chemie 50: 172–178

    Google Scholar 

  • Jüntgen H, van Heek KH (1970) Reaktionsabläufe unter nicht-isothermen Bedingungen. In: Davison A, Dewar MJS, Hafner K, Heilbronner E, Hofmann U, Niedenzu K, Schäfer K, Wittig G (eds) Fortschritte der chemischen Forschung. Topics Curr Chem 13: 601–699

    Google Scholar 

  • Jurgan H, Devay L, Block M, Kettel D, Mattern G (1983) Erdgasmigration und Lagerstättenbildung am Beispiel der Erdgasfelder Ost–Niedersachens. BMFT–FB–T 83–153, 78 pp

    Google Scholar 

  • Kharaka YK, Carothers WW, Rosenbauer RJ (1983) Thermal decarboxylation of acetic acid: implications for origin of natural gas. Geochim Cosmochim Acta 47: 397–402

    Google Scholar 

  • Klein J (1971) Untersuchungen zur Abspaltung von Wasserdampf, CO, C02, N2 und H2 bei der nichtisothermen Steinkohlenpyrolyse unter inerter und oxidierender Atmosphäre. Thesis, RWTH Aachen, 117 pp

    Google Scholar 

  • Klein J, Jüntgen H (1972) Studies on the emission of elemental nitrogen from coals of different rank and its release under geochemical conditions. In: Gaertner HR v, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 647–656

    Google Scholar 

  • Koch E (1977) Non-isothermal reaction analysis. Academic Press, London, 607 pp

    Google Scholar 

  • Krooss BM, Leythaeuser D, Lillack H (1993) Nitrogen-rich natural gases. Qualitative and quantitative aspects of natural gas accumulation in reservoirs. Erdöl Kohle-Erdgas-Petrochem 46: 271–276

    Google Scholar 

  • Krooss BM, Littke R, Miiller B, Frielingsdorf J, Schwochau K, Idiz EF (1995) Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. In: Rice D, Schoell M (eds) Sources of natural gas. Chem Geol 126: 291–318

    Google Scholar 

  • Landes KK (1967) Eometamorphism and oil and gas in time and space, part 1. AAPG Bull 51 (6): 828–841

    Google Scholar 

  • Larter SR (1988) Some pragmatic perspectives in source rock geochemistry. Mar Petrol Geol 5: 194–204

    Google Scholar 

  • Larter SR, Horsfield B (1993) Determination of structural components of kerogens by the use of analytical pyrolysis methods. In: Engel MH, Macko SA (eds) Organic geochemisrtry. Plenum Press, New York, pp 271–287

    Google Scholar 

  • Lasaga AC (1981a) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RI (eds) Kinetics of geochemical processes. Mineralogical Society of America, Rev Mineral 8: 1–68

    Google Scholar 

  • Lasaga AC (1981b) Transition state theory. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Mineralogical Society of America, Rev Mineral 8: 135–169

    Google Scholar 

  • Lewan MD (1985) Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philos Trans R Soc Lond A 315: 123–134

    Google Scholar 

  • Lillack H (1992) Untersuchungen zur Beeinflussung der pyrolytischen Gasbildung aus Kerogen durch Muttergesteinsmineralien. Dissertation, RWTH Aachen, 193 pp

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in coalification. Akad Nauk SSSR Izv Ser Geol 3: 95–106 (in Russian)

    Google Scholar 

  • Mackenzie AS, Quigley TM (1988) Principles of geochemical prospect appraisal. AAPG Bull 72: 399–415

    Google Scholar 

  • Mango FD, Hightower JW, James AT (1994) Role of transition-metal catalysis in the formation of natural gas. Nature 368: 536–538

    Google Scholar 

  • Mann U (1987) Veränderung von Mineralmatrix und Porosität eines Erdölmuttergesteins durch einen Intrusivkörper (Lias epsilon 2–3: Hils-Mulde, NW-Deutschland). Facies 17: 181–188

    Google Scholar 

  • Momper J A, Williams J A (1984) Geochemical exploration in the Powder River Basin. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. AAPG Mem 35: 181–191

    Google Scholar 

  • Neumann HJ, Paczynska-Lahme B, Severin D (1981) Composition and properties of petroleum. In: Beckmann H (ed) Geology of petroleum 5. Wiley, Chichester, 137 pp

    Google Scholar 

  • Oberlin A, Boulmier JL, Villey M (1980) Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage fo kerogen. In: Durand B (ed) Kerogen. Insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 191–241

    Google Scholar 

  • Philippi GT (1965) On the depth, time and mechanism of petroleum generation. Geochim Cosmochim Acta 29: 1021–1049

    Google Scholar 

  • Pitt GJ (1962) The kinetics of the evolution of volatile products from coal. Fuel 41: 267–274

    Google Scholar 

  • Polanyi M, Wigner E (1928) Über die Interferenz von Eigenschwingungen als Ursache von Energieschwankungen und chemischer Umsetzungen. Z Physik Chem A 139: 439–452

    Google Scholar 

  • Powell TG (1978) An assessment of the hydrocarbon source rock potential of the Canadian arctic islands. Geol Surv Can Pap, pp 78–12

    Google Scholar 

  • Price LC, Wenger LM (1992) The control of pressure on petroleum generation, maturation, and thermal destruction as delineated by hydrous pyrolysis. In: Eckardt CB, Maxwell JR, Larter SR, Manning DAC (eds) Advances in organic geochemistry 1991. Org Geochem 19: 141–160

    Google Scholar 

  • Price LC (1980) Shelf and shallow basin oil as related to hot–deep origin of petroleum. J Petrol Geol 3: 91–116

    Google Scholar 

  • Pusey WC III (1973) The ESR-kerogen method: a new technique of estimating the organic maturity of sedimentary rocks. Petrol Times 77: 21–26

    Google Scholar 

  • Quigley TM, Mackenzie AS, Gray JR (1987) Kinetic theory of petroleum generation. In: Doligez B (ed) Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris, pp 649–666

    Google Scholar 

  • Rajeshwar K, Dubow J (1982) On the validity of a first–order kinetics scheme for the thermal decomposition of oil shale kerogen. Thermochim Acta 54: 71–85

    Google Scholar 

  • Robert P (1985) Histoire géothermique et diagenèse organique.Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, Mem 8, Pau

    Google Scholar 

  • Rullkötter J, Michaelis W (1990) The structure of kerogen and related materials. A review of recent progress and future trends. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 829–852

    Google Scholar 

  • Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller PJ, Radke M, Schaefer RG, Schenk HJ, Schwochau K, Witte EG, Welte DH (1988) Organic matter maturation under the influence of a deep intrusive body: a natural experiment for quantitation of hydrocarbon generation and expulsion (Toarcian Shale, northern Germany). In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 847–856

    Google Scholar 

  • Sachsenhofer RF (1994) Petroleum generation and migration in the Styrian Basin (Pannonian Basin system, Austria): an integrated geochemical and numerical modelling study. Mar Petrol Geol 11: 684–701

    Google Scholar 

  • Schaefer RG, Schenk HJ, Hardelauf H, Harms R (1990) Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 115–120

    Google Scholar 

  • Schenk H J, Horsfield B (1993) Kinetics of petroleum generation by programmed-temperature closed versus open system pyrolysis. Geochim Cosmochim Acta 57: 623–630

    Google Scholar 

  • Schenk H J, Horsfield B (1993) Kinetics of petroleum generation by programmed-temperature closed versus open system pyrolysis. Geochim Cosmochim Acta 57: 623–630

    Google Scholar 

  • Schenk HJ, Witte EG, Littke R, Schwochau K (1990) Structural modifications of vitrinite and alginite concentrates during pyrolytic maturation at different heating rates. In: Béhar F, Durand B (eds) Advances in organic geochemistry 1989. Org Geochem 16: 943–950

    Google Scholar 

  • Schenk HJ, Horsfield B, Witte EG (1993) Organic geochemistry of freshwater and alkaline lacustrine environments Green River Formation, Wyoming. Part III: Comparative characterization of selected shale samples by various spectroscopic and pyrolysis techniques including kinetic measurements. In: Øygard K (ed) Poster sessions from the 16th Int Meet on Organic geochemistry, Stavanger 1993. Falch Hurtigtrykk, Oslo, pp 324–327

    Google Scholar 

  • Snowdon LR (1979) Errors in extrapolation of experimental kinetic parameters to organic geochemical systems. AAPG Bull 63: 1128–1134

    Google Scholar 

  • Sweeney JJ, Burnham AK, Braun RL (1987) A model of hydrocarbon generation from type I kerogen: application to Uinta Basin, Utah. AAPG Bull 71: 967–985

    Google Scholar 

  • Tackach NE, Barker C, Kemp MK (1987) Stability of natural gas in the deep surface: thermodynamic calculation of equilibrium composition. AAPG Bull 71: 322–333

    Google Scholar 

  • Tegelaar EW, Noble RA (1994) Kinetics of hydrocarbon generation as a function of the macromolecular structure of kerogen. In: Telnaes N, van Graas G, Øygard K (eds) Advances in organic geochemisrtry 1993. Org Geochem 22: 543–574

    Google Scholar 

  • Tissot B (1969) Premières données sur les mécanismes et la cinétique de la formation du pétrole dans les sédiments. Simulation d’un schéma réactionnel sur ordinateur. Rev Inst Fr Pét 24: 470–501

    Google Scholar 

  • Tissot B, Espitalié J (1975) L’évolution thermique de la matière organique des sédiments: application d’une simulation mathématique. Rev Inst Fr Pét 30: 743–777

    Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York, 699 pp

    Google Scholar 

  • Tissot B, Espitalié J, Deroo G, Tempere C, Jonathan D (1974) Origin and migration of hydrocarbons in the eastern Sahara (Algeria). In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Éditions Technip, Paris, pp 315–334

    Google Scholar 

  • Tissot BP, Pelet R, Ungerer Ph (1987) Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. AAPG Bull 71: 1445–1466

    Google Scholar 

  • Ungerer P (1990) State of the art of research in kinetic modelling of oil formation and expulsion. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Org Geochem 16: 1–25

    Google Scholar 

  • Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327: 52–54

    Google Scholar 

  • Ungerer P, Espitalié J, Marquis F, Durand B (1986) Use of kinetic models of organic matter evolution for the reconstruction of paleotemperatures. Application to the case of the Gironville well (France). In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 531–546

    Google Scholar 

  • Ungerer P, Béhar F, Villalba M, Heum OR, Audibert A (1988) Kinetic modelling of oil cracking. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 857–868

    Google Scholar 

  • Urov KE (1980) Thermal decomposition of kerogens, mechanisms and analytical application.J Anal Appl Pyrol 1: 323–338

    Google Scholar 

  • van Heek KH, Jüntgen H (1968) Bestimmung der reaktionskinetischen Parameter aus nicht-isothermen Messungen. Ber Bunsenges Phys Chem 72: 1223–1231

    Google Scholar 

  • van Heek KH, Jüntgen H, Peters W (1967) Nicht-isotherme Reaktionskinetik der Kohlepyro- lyse. I. Theoretische und experimentelle Grundlagen, Voruntersuchungen an Carbonsäuren. Brennstoff-Chemie 48: 163–194

    Google Scholar 

  • van Heek KH, Jüntgen H, Luft KF, Teichmüller M (1971) Aussagen zur Gasbildung in friihen Inkohlungsstadien auf Grund von Pyrolyseversuchen. Erdol Kohle-Erdgas-Petrochem 24: 566–572

    Google Scholar 

  • van Krevelen DW, van Heerden C, Huntjens FJ (1951) Physicochemical aspects of the pyrolysis of coal and related organic compounds. Fuel 30: 253–259

    Google Scholar 

  • Wall GC, Smith SJC (1987) Kinetics of the production of individual products from the isothermal pyrolysis of seven Australian oil shales. Fuel 66: 345–349

    Google Scholar 

  • Waples DW (1980) Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bull 64: 916–926

    Google Scholar 

  • Welte DH (1965) Relation between petroleum and source rock. AAPG Bull 49: 2246–2268

    Google Scholar 

  • Welte DH, Schaefer RG, Yalçin MN (1988) Gas generation from source rocks: aspects of a quantitative treatment. Chem Geol 71: 105–116

    Google Scholar 

  • Witte EG, Schenk HJ, Müller PJ, Schwochau K (1988) Structural modifications of kerogen during natural evolution as derived from 13C NMR, IR spectroscopy and Rock-Eval pyrolysis of Toarcian Shales. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 1039–1044

    Google Scholar 

  • Wood DA (1988) Relationships between thermal maturity indices calculated using the Arrhenius equation and Lopatin method: implications for petroleum exploration. AAPG Bull 72: 115–134

    Google Scholar 

  • Yalçin MN, Schenk HJ, Schaefer RG (1994) Modelling of gas generation in coals of the Zonguldak basin (northwestern Turkey). Int J Coal Geol 25: 195–212

    Google Scholar 

  • Yen TF (1974) A new structural model of oil shale kerogen. Prepr.-Div Fuel Chem Am Chem Soc 9: 109–114

    Google Scholar 

  • Zieglar DL, Spotts JH (1978) Reservoir and source-bed history of Great Valley, California. Bull Am Assoc Petrol Geol 62: 813–826

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schenk, H.J., Horsfield, B., Krooss, B., Schaefer, R.G., Schwochau, K. (1997). Kinetics of Petroleum Formation and Cracking. In: Welte, D.H., Horsfield, B., Baker, D.R. (eds) Petroleum and Basin Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60423-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60423-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61128-8

  • Online ISBN: 978-3-642-60423-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics