Skip to main content

Acetylcholine Receptors as Sites for Developing Neonicotinoid Insecticides

  • Chapter
Biochemical Sites of Insecticide Action and Resistance

Abstract

The world market for insecticides is still dominated, albeit declining, by compounds that irreversibly inhibit acetylcholinesterase (AChE), one of the most essential enzymes in the central nervous system of insects, responsible for the cleavage of the all-important neurotransmitter acetylcholine (Pittman 1971). However, as shown in Table 1, the market share of these AChE inhibitors, i.e. organophosphates and carbamates, decreased from 71% in 1987 to some 56% in 1997. Combining the AChE inhibitors and those insecticides that act on the voltage-gated sodium channel, in particular the pyrethroids, accounts for more than 75% of the world market only by these two modes of action (Table 1). One of the insecticide molecular target sites of growing importance is the nicotinic acetylcholine receptor (nAChR; Table 1); increasing considerably in value over the last decade. Only ten years ago insecticides that acted on the nAChR were of minor economic importance (<2% of the total insecticide market until 1991), and registered compounds were cartap (1964), bensultap (1968) and thiocyclam (1977). These compounds were metabolised in the insect’s body to nereistoxin, a naturally occurring toxin described in the marine worm Lumbriconereis heteropoda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amar M,ThomasP, Wonnacott S,LuntGG(1995) A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitizing homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes. Neurosci Lett199:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1999) Agrow no 281, p 22

    Google Scholar 

  • Bai D, Lummis SCR, Leicht W, Breer H, Sattelle DB (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33:197–204.

    Article  CAS  Google Scholar 

  • Benson JA (1989) Insect nicotinic acetylcholine receptors as targets for insecticides. In: Mc Farlane NR, Farnham AW (eds) Progress and prospects in insect control. BCPC Monograph 43. UK British Crop Protection Council, pp 59–70.

    Google Scholar 

  • Bertrand D, Ballivet M, Gomez M, Bertrand S, Phannavong B, Gundelfinger ED (1994) Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur J Neurosci 6:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Breer H (1988) Receptors for acetylcholine in the nervous system of insects. In: Lunt GG (ed) Neurotox 88 Molecular basis of drug and pesticide action. Excerpta Medica, Amsterdam, pp 301–309.

    Google Scholar 

  • Breer H, Sattelle DB (1987) Molecular properties and functions of insect acetylcholine receptors. J Insect Physiol 33:771–790.

    Article  CAS  Google Scholar 

  • Buckingham SD, Lapied B, Le Corronc H, Grolleau F, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692.

    PubMed  CAS  Google Scholar 

  • Chao SL, Dennehy TJ, Casida JE (1997) Whitefly (Hemiptera: Aleyrodidae) binding site for imidacloprid and related insecticides: a putative nicotinic acetylcholine receptor. J Econ Entomol 90(4):879–882.

    PubMed  CAS  Google Scholar 

  • Cheung H, Clarke BS, Beadle DJ (1992) A patch-clamp study of the action of a nitromethylene heterocycle insecticide on cockroach neurones growing in vitro. Pestic Sci 34:187–193.

    Article  CAS  Google Scholar 

  • David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach, Periplaneta americana. J Exp Biol 108:119–136.

    CAS  Google Scholar 

  • Dunbar SJ, Goodchild JA, Cutler PM (1998) Actions of natural products on insect nicotinic receptors. 9th International Congress of Pesticide chemistry, Book of Abstracts l:4B–040

    Google Scholar 

  • Eastham HM, Lind RJ, Eastlake JL, Clarke BS, Towner CP, Reynolds SE, Wolstenholme AJ, Wonnacott S (1998) Characterisation of a nicotinic acetylcholine receptor from the insect Manduca sexta. Eur J Neurosci 10:879–889

    Article  PubMed  CAS  Google Scholar 

  • Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 50–74

    Google Scholar 

  • Elbert A, Becker B, Hartwig J, Erdelen C (1991) Imidacloprid - a new systemic insecticide. Pflanzenschutz-Nachr Bayer 44:113–136

    CAS  Google Scholar 

  • Elbert A, Nauen R, Cahill M, Devonshire AL, Scarr A, Sone S, Steffens R (1996) Resistance management for chloronicotinyl insecticides using imidacloprid as an example. Pflanzenschutz Nachr Bayer 49:5–54.

    CAS  Google Scholar 

  • Goodman CS, Spitzer NC (1980) Embryonic development of neurotransmitter receptors in grasshoppers. In: Sattelle DB, Hall LM, Hidebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 195–307.

    Google Scholar 

  • Gundelfinger ED (1992) How complex is the nicotinic receptor system of insects? TINS 15(6):206–211.

    PubMed  CAS  Google Scholar 

  • Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Harrow ID, Sattelle DB (1983) Acetylcholine receptors on the cell body membrane of giant interneurone 2 in the cockroach Periplaneta americana. J Exp Biol 105:339–350.

    CAS  Google Scholar 

  • Hermsen B, Stetzer E, Thees R, Heiermann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt R, Maelicke A (1998) Neuronal nicotinic receptors in the locust Locusta migratoria. J Biol Chem 273(29):18394–18404.

    Article  PubMed  CAS  Google Scholar 

  • Holladay MW, Dart MJ, Lynch JK (1997) Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 40:4169–4194.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Williamson MS, Devonshire AL, Windass JD, Lansdell SJ, Millar NS (1999) Molecular characterisation and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae. J Neurochem 73:380–389.

    Article  PubMed  CAS  Google Scholar 

  • Kagabu S (1996) Studies on the synthesis and insecticidal activity of neonicotinoid compounds. Pestic Sci 46:231–239.

    Google Scholar 

  • Kagabu S (1999) Discovery of chloronicotinyl insecticides. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 91–106.

    Chapter  Google Scholar 

  • Kagabu S, Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K (1992) l-(6-Halonicotinyl)-2- nitromethylene-imidazolidines as potential new insecticides. Biosci Biotechnol Biochem 56:326–363.

    Article  Google Scholar 

  • Kishida H, Sakamoto N, Umeda K, Fujimoto H (1992) Preparation of nitropyrimidine derivatives as insecticides. Jpn Kokai Tokkyo Koho JP04,173,788, Chem Abstr 118:22251q

    Google Scholar 

  • Kodaka K, Kinoshita K, Wakita T, Kawahara N, Yasui N (1998) MTI 446: a novel systemic insect control compound. Proc Brighton Crop Protection Conf-Pests and Diseases, pp 21–26

    Google Scholar 

  • Kollmeyer WD, Flattum RF, Foster JP, Powell JE, Schroeder ME, Soloway SB (1999) Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 71–91.

    Chapter  Google Scholar 

  • Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the a7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:283–294.

    PubMed  CAS  Google Scholar 

  • Latli B, Tomizawa M, Casida JE (1997) Synthesis of a novel [125I]neonicotinoid photoaffinity probe for the Drosophila nicotinic acetylcholine receptor. Bioconjugate Chem 8:7–14.

    Article  CAS  Google Scholar 

  • Leech CA, Jewess P, Marshall J, Sattelle DB (1991) Nitromethylene actions on in situ and expressed insect nicotinic acetylcholine receptors. FEBS Lett 290:90–94.

    Article  PubMed  CAS  Google Scholar 

  • Léna C, Changeux J-P (1993) Allosteric modulations of the nicotinic acetylcholine receptor. TINS 16(5):181–186.

    PubMed  Google Scholar 

  • Leicht W (1996) Imidacloprid - a chloronicotinyl insecticide: biological activity and agricultural significance. Pflanzenschutz-Nachr Bayer 49:71–84.

    CAS  Google Scholar 

  • Lind RJ, Clough MS, Reynolds SE, Earley FGP (1998) [3H]imidaclorid labels high- and low- affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Pestic Biochem Physiol 62:3–14.

    Article  CAS  Google Scholar 

  • Lind RJ, Clough MS, Earley FGP, Wonnacott S, Reynolds SE (1999) Characterisation of multiple α-bungarotoxin binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Insect Biochem Mol Biol 29:979–988.

    Article  CAS  Google Scholar 

  • Liu M-Y, Casida JE (1993a) Relevance of [3H]imidaclorid binding site in housefly head acetylcholine receptor to insecticidal activity of 2-nitromethylene- and 2-nitroimino- imidazolidines. Pestic Biochem Physiol 46:200–206.

    Article  CAS  Google Scholar 

  • Liu M-Y, Casida JE (1993b) High affinity binding of [3H]imidaclorid in the insect acetylcholine receptor. Pestic Biochem Physiol 46:40–46.

    Article  CAS  Google Scholar 

  • Liu M-Y, Latli B, Casida JE (1995) Imidacloprid binding site in Musca nicotinic acetylcholine receptor: interactions with physostigmine and a variety of nicotinic agonists with chioropyridyl and chlorothiazolyl substituents. Pestic Biochem Physiol 52:170–181.

    Article  CAS  Google Scholar 

  • Maienfisch P, Sell L (1992) Preparation of 3-(heterocyclylmethyl)-4-iminoperhydro-1,3,5- oxadiazine derivatives as pesticides. Eur Pat Appl EP 580553 A2 940126.

    Google Scholar 

  • Maienfisch P, Brandl F, Kobel W, Rindlisbacher A, Senn R (1999) CGA 293’343: a novel, broad-spectrum neonicotinoid insecticide. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 177–213.

    Chapter  Google Scholar 

  • Marshall J, Buckingham SD, Shingai R, Lunt GG, Goosey MW, Darlison MG, Sattelle DB, Barnard EA (1990) Sequence and functional expression of a single a subunit of an insect nicotinic acetylcholine receptor. EMBO J 9:4391–4398.

    PubMed  CAS  Google Scholar 

  • Matsuda K, Buckingham SD, Freeman JC, Squire MD, Baylis HA, Sattelle DB (1998) Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br J Pharmacol 123:518–524.

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H, Mencke N, Hansen O (1999) Effects of imidacloprid on adult and larval stages of the flea Ctenocephalides felis after in vivo and in vitro application: a light- and electron- microscopy study. Parasitol Res 85:625–637.

    Article  PubMed  CAS  Google Scholar 

  • Minamida I, Iwanaga K, Tabuchi T (1993a) Synthesis and insecticidal activity of acyclic nitroethene compounds containing heteroarylmethylamino groups. J Pestic Sci 18:41–48.

    Google Scholar 

  • Minamida I, Iwanaga K, Tabuchi T (1993b) Synthesis and insecticidal activity of acyclic nitroethene compounds containing a 3-pyridylmethylamino group. J Pestic Sci 18:31–40.

    Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N (1999) Nicotinic acetylcholine receptor at 4.6 ang resolution: transverse tunnels in the channel wall. J Mol Biol 288:765–786.

    Article  PubMed  CAS  Google Scholar 

  • Mongan NP, Baylis HA, Adcock C, Smith GR, Sansom MSP, Sattelle DB (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor a subunits in Caenorhabditis elegans. Recept Channels 6:213–228.

    PubMed  CAS  Google Scholar 

  • Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K, Kagabu S (1993) l-Diazinylmethyl-2- nitromethylene-imidazolidines and 2-nitroimino-imidazolidines as new potential insecticides. J Pestic Sci 18:119–123.

    Google Scholar 

  • Mullins JW (1993) Imidacloprid - a new nitroguanidine insecticide. ACS Symp Ser 254:183–198

    Article  Google Scholar 

  • Nagata K, Aistrup GL, Song J-H, Narahashi T (1996) Subconductance-state currents generated by imidacloprid at the acetylcholine receptor in PC 12 cells.NeuroReport 7(5):1025–1028.

    Article  Google Scholar 

  • Nagata K, Song J-H, Shono T, Narahashi T (1998) Modulation of the neuronal nicotinic acetyl-choline receptor-channel by the nitromethylene heterocycle imidacloprid. J Pharmacol Exp Ther 285:731–738.

    PubMed  CAS  Google Scholar 

  • Nauen R (1995) Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44:145–153.

    Article  CAS  Google Scholar 

  • Nauen R, Strobel J, Tietjen K, Otsu Y, Erdelen C, Elbert A (1996) Aphicidal activity of imidacloprid against a tobacco feeding strain of Myzus persicae (Homoptera: Aphididae) from Japan closely related to Myzus nicotianae and highly resistant to carbamates and organophosphates. Bull Entomol Res 86:165–171.

    Article  CAS  Google Scholar 

  • Nauen R, Tollo B, Tietjen K, Elbert A (1998a) Antifeedant effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in Myzus persicae and Myzus nicotianae. Pestic Sci 51:52–56.

    Google Scholar 

  • Nauen R, Tietjen K, Wagner K, Elbert A (1998b) Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera: Aphididae). Pestic Sci 52:53–57.

    Article  CAS  Google Scholar 

  • Nauen R, Reckmann U, Armborst S, Stupp HP, Elbert A (1999a) Whitefly-active metabolites of imidacloprid: biological efficacy and translocation in cotton plants. Pestic Sci 55:265–271.

    Article  CAS  Google Scholar 

  • Nauen R, Ebbinghaus U, Tietjen K (1999b) Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic Sci 55:608–610.

    Article  CAS  Google Scholar 

  • Narahashi T, Ginsburg KS, Nagata K, Song JH, Tatebayashi H (1998) Ion channels as targets for insecticides. NeuroTox 19:581–590.

    CAS  Google Scholar 

  • Nishimura K, Kanda Y, Okazawa A, Ueno T (1994) Relationship between insecticidal and neuro- physiological activities of imidacloprid and related compounds. Pestic Biochem Physiol 50:51–59.

    Article  CAS  Google Scholar 

  • Nishimura K, Tanaka M, Iwaya K, Kagabu S (1998) Relationship between insecticidal and nerve- excitatory activities of imidacloprid and its alkylated congeners at the imidazoline NH site. Pestic Biochem Physiol 62:172–178.

    Article  CAS  Google Scholar 

  • Orr N, Shaffner J, Watson GB (1997) Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana. Pestic Biochem Physiol 58:183–192.

    Article  CAS  Google Scholar 

  • Pennisi E (1999) Fruit fly researchers sign pact with Celera. Science 283:767.

    Article  PubMed  CAS  Google Scholar 

  • Pitman RM (1971) Transmitter substances in insects: a review. Comp Gen Pharmacol 2:347–371.

    Article  PubMed  CAS  Google Scholar 

  • Rajappa S (1981) Nitroenamines: preparation, structure and synthetic potential. Tetrahedron Lett 37:1453–1480.

    CAS  Google Scholar 

  • Restifo LL, White K (1990) Molecular and genetic approaches to neurotransmitter and neuro-modulator systems in Drosophila. Adv Insect Physiol 22:115–219.

    Article  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102.

    Article  CAS  Google Scholar 

  • Salgado VL, Watson GB, Sheets JJ (1997) Studies on the mode of action of spinosad, the active ingredient in tracer insect control. Proc Beltwide Cotton Conf 2:1082–1084.

    Google Scholar 

  • Sattelle DB, Harrow ID, Hue B, Pelhate M, Gepner JI, Hall LM (1983) α-Bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurones. J Exp Biol 107:473–489.

    CAS  Google Scholar 

  • Sattelle DB, Buckingham SD, Wafford KA, Sherby SM, Barkry NM, Eldefrawi AT, Eldefrawi ME, May TE (1989) Actions of the insecticide 2(nitromethylene)tetrahydro-l,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors. Proc R Soc Lond B 237:501–514.

    Article  PubMed  CAS  Google Scholar 

  • Schröder ME, Flattum RF (1984) The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic Biochem Physiol 22:148–160.

    Article  Google Scholar 

  • Schulz R, Sawruk E, Mülhardt C, Bertrand S, Baumann A, Phannavong B, Betz H, Bertrand D, Gundelfinger ED, Schmitt B (1998) Da3, a new functional α subunit of nicotinic acetylcholine receptors from Drosophila. J Neurochem 71:853–862.

    Article  PubMed  CAS  Google Scholar 

  • Schuster R, Phannavong B, Schroeder C, Gundelfinger ED (1993) Immunohistochemical localization of a ligand-binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster. J Comp Neurol 335:149–162.

    Article  PubMed  CAS  Google Scholar 

  • Sgard F, Fraser SP, Katkowska MJ, Djamgoz MBA, Dunbar SJ, Winddass JD (1998) Cloning and functional characterisation of two novel nicotinic acetylcholine receptor a subunits from the insect pest Myzus persicae. J Neurochem 71:903–912.

    Article  PubMed  CAS  Google Scholar 

  • Shiokawa K, Tsuboi S, Moriya K, Kagabu S (1995) Chloronicotinyl insecticides: development of imidacloprid. In: Ragsdale NN, Kearney PC, Plimmer JR (eds) 8th international congress of pesticide chemistry - option 2000. ACS Conf Proc Ser, pp 49–59.

    Google Scholar 

  • Soloway SB, Henry AC, Kollmeyer WD, Padgett WM, Powell JE, Roman SA, Tieman CH, Corey RA, Home CA (1979) Nitromethylene insecticides. In: Geissbühler H, Brooks GT, Kearney PC (eds) Advances in pesicide science, part 2. Pergamon Press, Oxford, pp 206–217.

    Google Scholar 

  • Sone S, Nagata K, Tsuboi S, Shono T (1994) Toxic symptoms and neural effect of a new class of insecticide, imidacloprid, on the American cockroach, Periplaneta americana (L.). J Pestic Sci 19:69–72.

    CAS  Google Scholar 

  • Tabuchi T, Fusaka T, Iwanaga K (1994) Synthesis and insecticidal activity of acyclic nitroethene compounds containing a (6-substituted)-3-pyridylamino group. J Pestic Sci 19:119–125.

    CAS  Google Scholar 

  • Takahashi H, Mitsui J, Takakusa N (1992) NI-25, a new type of systemic and broad spectrum insecticide. Proc Brighton Crop Protection Conf Pest Diseases 1:89–96.

    Google Scholar 

  • Thompson G, Hutchins S (1999) Spinosad. Pesticide Outlook 4:78–81.

    Google Scholar 

  • Tomizawa M, Yamamoto I (1992) Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci 17:231–236.

    CAS  Google Scholar 

  • Tomizawa M, Yamamoto I (1993) Structure-activity relationships of nicotinoids and imidacloprid analogs. J Pestic Sci 18:91–98.

    Google Scholar 

  • Tomizawa M, Latli B, Casida JE (1996) Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. J Neurochem 67:1669–1676.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Latli B, Casida JE (1999) Structure and function of insect nicotinic acetylcholine receptors studied with nicotinoid insecticide affinity probes. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 271–292.

    Chapter  Google Scholar 

  • Uneme H, Iwanaga K, Higuchi N, Kando Y, Okauchi T, Akayama A, Minamida I (1998) Synthesis and insecticidal activity of nitroguanidine derivatives. 9th IUPAC Congress on Pesticide chemistry, Book of Abstracts l:lD-009.

    Google Scholar 

  • van den Beukel I, van Kleef RGDM, Zwart R, Oortgiesen M (1998) Physiostigmine and acetylcholine differentially activate nicotinic receptor subpopulations in Locusta migratoria neurons. Brain Res 789:263–273.

    Article  PubMed  Google Scholar 

  • Wollweber D, Tietjen K (1999) Chloronicotinyl insecticides: a success of the new chemistry. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Berlin Heidelberg New York, pp 109–125.

    Chapter  Google Scholar 

  • Zwart R, Oortgiesen M, Vijverberg HP (1992) The nitromethylene heterocycle l-(pyridin-3- ylmethyl)-2-nitromethylene-imidazolidine distinguishes mammalian from insect nicotinic receptor subtypes. Eur J Pharmacol 228:165–169.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Nauen, R., Ebbinghaus-Kintscher, U., Elbert, A., Jeschke, P., Tietjen, K. (2001). Acetylcholine Receptors as Sites for Developing Neonicotinoid Insecticides. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics