Skip to main content

Abstract

The organophosphate (OP) insecticides were first introduced as pest control agents over 50 years ago. These compounds still account for approximately 30% of the registered synthetic insecticides and acaricides in the US, and are used in a variety of agriculture, public hygiene and medical settings (Ware 1994). Organophosphate insecticides cause toxicity through inhibition of acetylcholinesterase (AChE), which is responsible for the degradation of the excitatory neurotransmitter, acetylcholine, thereby terminating transmission of nerve impulses at cholinergic synapses. Inhibition of this enzyme prolongs the residence time of acetylcholine at synapses resulting in hyper-excitation and eventual death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agosin M (1985) Role of microsomal oxidations in insecticide degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 647–712.

    Google Scholar 

  • Argentine JA, Zhu KY, Lee SH, Clark JM (1994) Biochemical mechanisms of azinphosmethyl resistance in isogenic strains of Colorado potato beetle. Pestic Biochem Physiol 48:63–78.

    CAS  Google Scholar 

  • Beeman RW, Schmidt BA (1982) Biochemical and genetic aspects of malathion-specific resistance in the Indian meal moth (Lepidoptera: Pyralidae). J Econ Entomol 75:945–949.

    CAS  Google Scholar 

  • Bell JD, Busvine JR (1967) Synergism of organophosphates in Musca domestica and Chrysomyia putoria. Entomol Exp Appl 10:263–269.

    CAS  Google Scholar 

  • Berrada S, Fournier D, Cuany A, Nguyen TX (1994) Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera: Psyllidae): altered acetylcholinesterase and detoxifying oxidases. Pestic Biochem Physiol 48:41–47.

    CAS  Google Scholar 

  • Brown (1961) The challenge of insecticide resistance. Bull Entomol Soc Am 7:6–19.

    CAS  Google Scholar 

  • Byrne FJ, Devonshire AL (1993) Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly Bemesia tabaci (Genn.). Pestic Biochem Physiol 45:34–42.

    CAS  Google Scholar 

  • Campbell PM, Trott JT, Claudioanos C, Smyth K-A, Russell RJ, Oakeshott JG (1997) Biochemistry of esterases associated with organophosphate resistance with comparisons to putative orthologues in other Diptera. Biochem Genet 35:17–40.

    PubMed  CAS  Google Scholar 

  • Campbell PM, Newcomb RD, Russell RJ, Oakeshott JG (1998a) Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 28:139–150.

    CAS  Google Scholar 

  • Campbell PM, Yen JL, Mausoumi A, Russell RJ, Batterham P, McKenzie JA, Oakeshott JG (1998b) Cross-resistance patterns among Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae), resistant to organophosphorus insecticides. J Econ Entomol 91:367–375.

    CAS  Google Scholar 

  • Cuany A, Jandani J, Berge J, Fournier D, Raymond M, Georgiou GP, Pasteur N (1993) Action of esterase B1 on chlorpyrifos in organophosphate-resistant Culex mosquitoes. Pestic Biochem Physiol 45:1–6.

    CAS  Google Scholar 

  • Chiang FM, Sun CN (1993) Glutathione transferase isozymes of diamondback moth larvae and their role in the degradation of some organophosphorus insecticides. Pestic Biochem Physiol 45:7–14.

    CAS  Google Scholar 

  • Dauterman WC (1985) Insect metabolism: extramicrosomal. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 713–730.

    Google Scholar 

  • Devonshire AL (1977) The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.) and its role in conferring insecticide resistance. Biochem J 167:675–683.

    PubMed  CAS  Google Scholar 

  • Devonshire AL, Field LM (1991) Gene amplifications and insecticide resistance. Annu Rev Entomol 36:1–24.

    PubMed  CAS  Google Scholar 

  • Devonshire AL, Moores GD (1982) A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic Biochem Physiol 18:253–246.

    Google Scholar 

  • Devonshire AL, Sawicki RM (1979) Insecticide-resistant Myzus persicae as an example of evolution by gene amplification. Nature 280:140–141.

    Google Scholar 

  • Dunkov BC, Guzov VM, Mocelin G, Shotkoski F, Brun A, Amichot M, ffrench-Constant RH, Feyereisen R (1997) The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol 16:1345–1356.

    PubMed  CAS  Google Scholar 

  • Eto M (1974) Organophosphorus pesticides: organic and biological chemistry. CRC Press, Boca Raton.

    Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533.

    PubMed  CAS  Google Scholar 

  • Field LM, Devonshire AL (1992) Esterase gene conferring insecticide resistance in aphids. In: Mullen CA, Scott JG (eds) Molecular mechanisms of insecticide resistance. ACS symposium series 505. American Chemical Society, Washington, DC, pp 209–217.

    Google Scholar 

  • Field LM, Devonshire AL, Ford BG (1988) Molecular evidence that insecticide resistance in peach- potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251:309–312.

    PubMed  CAS  Google Scholar 

  • Field LM, Devonshire AL, ffrench-Constant RH (1989a) The combined use of immunoassay and a DNA diagnostic technique to identify insecticide-resistant genotypes in the peach-potato aphid Myzus persicae (Sulz.). Pestic Biochem Physiol 34:174–178.

    CAS  Google Scholar 

  • Field LM, Devonshire AL, ffrench-Constant RH, Forde BG (1989b) Positive correlation between methylation and expression of amplified insecticide-resistance genes. FEBS Lett 243:323–327.

    CAS  Google Scholar 

  • ffrench-Constant RH, Devonshire AL, White RP (1988) Spontaneous loss and reselection of resistance in extremely resistant Myzus persicae (Sulzer). Pestic Biochem Physiol 30:1–10.

    CAS  Google Scholar 

  • Fournier D, Karch F, Bride J-M, Hall LMC, Berge J-B, Speirer P (1989) Drosophila melanogaster acetylcholinesterase gene: structure, evolution and mutation. J Mol Biol 210:15–22.

    PubMed  CAS  Google Scholar 

  • Fournier D, Bride J-M, Hoffmann F, Karch F (1992) Acetylcholinesterase: two types of modifications confer resistance to insecticide. J Biol Chem 267:14270–14274.

    PubMed  CAS  Google Scholar 

  • Georghiou GP (1986) The magnitude of the resistance problem. In: Pesticide resistance: strategies and tactics for management. National Academy of Sciences Press, Washington, DC.

    Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Guillemaud T, Rooker S, Pasteur N, Raymond M (1996) Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data. Heredity 77:535–543.

    PubMed  CAS  Google Scholar 

  • Hatano R, Scott JG (1993) Anti-P450lpr antiserum inhibits the activation of chlorpyrifos to chlorpyrifos oxon in housefly microsomes. Pestic Biochem Physiol 45:228–233.

    CAS  Google Scholar 

  • Hick CA, Field LM, Devonshire AL (1996) Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae. Insect Biochem Mol Biol 26:41–47.

    PubMed  CAS  Google Scholar 

  • Hodgson E (1985) Microsomal monooxygenases. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 11. Pergamon Press, New York, pp 225–322.

    Google Scholar 

  • Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, Sun CN (1998) Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 28:651–658.

    PubMed  CAS  Google Scholar 

  • Hughes PB, Raftos DA (1985) Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Weidemann) (Diptera: Calliphoridae). Bull Entomol Res 75:535–544.

    CAS  Google Scholar 

  • Jayawardena KGI, Karunaratne SHPP, Ketterman AJ, Hemingway J (1994) Determination of the role of elevated B2 esterase in insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae) from studies on the purified enzyme. Bull Entomol Res 84:39–43.

    CAS  Google Scholar 

  • Karunaratne SHPP, Hemingway J, Jayawardena KGI, Dassanayaka V, Vaughan A (1995a) Kinetic and molecular differences in the amplified and non-amplified esterases from insecticide- resistant and susceptible Culex quinquefasciatus mosquitoes. J Biol Chem 270:31124–31128.

    PubMed  CAS  Google Scholar 

  • Karunaratne SHPP, Jayawardena KGI, Hemingway J (1995b) The cross-reactivity spectrum of a polyclonal antiserum raised against the native amplified A2 esterase involved in insecticide resistance. Pestic Biochem Physiol 53:75–83.

    CAS  Google Scholar 

  • Ketterman AJ, Karunaratne SHPP, Jayawardena KGI, Hemingway J (1993) Qualitative differences between populations of Culex quinquefasciatus in both the esterases A2 and B which are involved in insecticide resistance. Pestic Biochem Physiol 47:142–148.

    CAS  Google Scholar 

  • Konno T, Hodgson E, Dauterman WC (1989) Studies on methyl parathion resistance in Heliothis virescens. Pestic Biochem Physiol 33:189.

    CAS  Google Scholar 

  • Liu N, Scott JG (1996) Genetic linkage of elevated cytochrome P450, cytochrome b5, P450 reductase, CYP6D1 and monooxygenase activities in pyrethroid resistant houseflies, Musca domestica. Biochem Genet 34:133–148.

    PubMed  CAS  Google Scholar 

  • Liu N, Scott JG (1997) Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in houseflies, Musca domestica. Insect Mol Biol 6:77–81.

    PubMed  CAS  Google Scholar 

  • Miota F, Scharf ME, Ono M, Marcon P, Meinke LJ, Wright RJ, Chandler LD, Siegfried BD (1998) Mechanisms of methyl and ethyl parathion resistance in the western corn rootworm (Coleoptera: Chrysomelidae). Pestic Biochem Physiol 61:39–52.

    CAS  Google Scholar 

  • Moores GD, Devine GJ, Devonshire AL (1994) Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pestic Biochem Physiol 49:114–120.

    CAS  Google Scholar 

  • Motoyama N, Dauterman WC (1980) Glutathione S-transferases: their role in the metabolism of organophosphorus insecticides. Rev Biochem Toxicol 2:49–69.

    CAS  Google Scholar 

  • Mouchés C, Pasteur N, Bergé J-B, Hyrien O, Raymond M, De Saint Vincent B (1986) Amplification of an esterase gene is responsible for insecticide resistance in a Californian Culex mosquito. Science 233:778–780.

    PubMed  Google Scholar 

  • Mouchés C, Magnin M, Bergé J-B, De Silvestri M, Beyssat V, Pasteur N, Georghiou GP (1987) Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc Natl Acad Sei USA 84:2113–2116.

    Google Scholar 

  • Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sei USA 94:7464–7468.

    CAS  Google Scholar 

  • Ono M, Richman JS, Siegfried BD (1994) Characterization of general esterases from susceptible and parathion-resistant strains of the greenbug (Homoptera: Aphididae). J Econ Entomol 87:1430–1436.

    CAS  Google Scholar 

  • Ono M, Swanson JJ, Field LM, Devonshire AL, Siegfried BD (1999) Amplification and methylation of an esterase gene associated with insecticide resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae). Insect Biochem Mol Biol 29:1065–1073.

    PubMed  CAS  Google Scholar 

  • Oppenoorth FJ (1985) Biochemistry and genetics of insecticide resistance. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 731–773.

    Google Scholar 

  • Oppenoorth FJ, van Asperen K (1960) Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132:298–300.

    PubMed  CAS  Google Scholar 

  • Parker AG, Russel RJ, Delves A, Oakshott JG (1991) Biochemistry and physiology of esterases in organophosphate-susceptible and—resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pestic Biochem Physiol 41:305–318.

    CAS  Google Scholar 

  • Parker AG, Campbell PM, Spackman ME, Russell RJ, Oakeshott JG (1996) Comparison of an esterase associated with organophosphate resistance in Lucilia cuprina with an orthologue not associated with resistance in Drosophila melanogaster. Pestic Biochem Physiol 55:85–95.

    PubMed  CAS  Google Scholar 

  • Pasteur N, Sinegre G, Gabinaud A (1981) Est-2 and est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance. Biochem Genet 19:499–508.

    PubMed  CAS  Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in agriculture and the environment. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Pittendrigh B, Aronstein K, Zinkovsky E, Andreev O, Campbell B, Daly J, Trowell S, ffrench-Constant RH (1997) Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and -resistant strain. Insect Biochem Mol Biol 27:507–512.

    PubMed  CAS  Google Scholar 

  • Qiao C-L, Raymond M (1995) The same esterase B1 haplotype is amplified in insecticide-resistant mosquitoes of the Culex pipiens complex from the Americas and China. Heredity 74 339–345.

    PubMed  CAS  Google Scholar 

  • Raffa KF, Priester TM (1985) Synergists as research tools and control agents in agriculture. J Agric Entomol 2:27–45.

    CAS  Google Scholar 

  • Raymond M, Beyssat-Arnaouty V, Sivasubramanian N, Mouche C, Georghiou GP, Pasteur N (1989a) Diversity of the amplification of various esterases B responsible for organophosphate resistance in Culex mosquitoes. Biochem Genet 27:417–423.

    PubMed  CAS  Google Scholar 

  • Raymond M, Heckel DG, Scott JG (1989b) Interactions between pesticide genes: model and experiment. Genetics 123:543–551.

    PubMed  CAS  Google Scholar 

  • Raymond M, Callaghan A, Fort P, Pasteur N (1991) Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350:151–153.

    PubMed  CAS  Google Scholar 

  • Ronis MJ, Hodgson E, Dauterman WC (1988) Characterization of multiple forms of cytochrome P450 from an insecticide resistant strain of housefly (Musca domestica). Pestic Biochem Physiol 32:74–90.

    CAS  Google Scholar 

  • Rooker S, Guillemaud T, Berge J, Pasteur N, Raymond M (1996) Coamplification of A and B esterase gene as a single unit in the mosquito Culex pipiens. Heredity 77:555–561.

    PubMed  CAS  Google Scholar 

  • Sakata K, Miyata T (1994) Biochemical characterization of carboxylesterase in the small brown planthopper Laodelphax striatellus (Fallén). Pestic Biochem Physiol 50:247–256.

    CAS  Google Scholar 

  • Scharf ME, Hemingway J, Reid BL, Small GJ, Bennett GW (1996) Toxicological and biochemical characterization of insecticide resistance in a field-collected strain of Blattella germanica (Dictyoptera: Blattellidae). J Econ Entomol 89:322–331.

    CAS  Google Scholar 

  • Scharf ME, Neal JJ, Bennett GW (1998) Changes of insecticide resistance levels and detoxication enzymes following insecticide selection in the German cockroach, Blattella germanica (L.). Pestic Biochem Physiol 59:67–79.

    Google Scholar 

  • Scharf ME, Meinke LJ, Wright RJ, Chandler LD, Siegfried BD (1999) Metabolism of carbaryl by insecticide resistant and susceptible western corn rootworm populations (Coleoptera: Chrysomelidae). Pestic Biochem Physiol 63:85–96.

    CAS  Google Scholar 

  • Scott JA, Collins FH, Feyereisen R (1994) Diversity of cytochrome P450 genes in the mosquito, Anopheles Albimanus. Biochem Biophys Res Commun 205:1452–1459.

    PubMed  CAS  Google Scholar 

  • Scott JG (1991) Investigating mechanisms of insecticide resistance: methods, strategies and pitfalls. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 39–59.

    Google Scholar 

  • Scott JG (1999) Cytochrome P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777.

    PubMed  CAS  Google Scholar 

  • Shiotsuke T, Kakimoto T, Eto M (1992) Irreversible inactivation of glutathione transferases by saligenin cyclic phosphates. Pestic Biochem Physiol 42:119.

    Google Scholar 

  • Shufran RA, Wilde GE, Sloderbeck PE (1996) Description of three isozyme polymorphisms associated with insecticide resistance in greenbug (Homoptera: Aphididae) populations. J Econ Entomol 89:46–50.

    CAS  Google Scholar 

  • Siegfried BD, Scott JG (1992) Biochemical characterization of hydrolytic and oxidative enzymes in insecticide resistant and susceptible strains of the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol 85:1092–1098.

    PubMed  CAS  Google Scholar 

  • Siegfried BD, Ono M (1993a) Mechanisms of parathion resistance in the greenbug Schizaphis graminum (Rondani). Pestic Biochem Physiol 45:24–33.

    CAS  Google Scholar 

  • Siegfried BD, Ono M (1993b) Parathion toxicokinetics in resistant and susceptible strains of the greenbug (Homoptera: Aphididae). J Econ Entomol 86:1317–1323.

    CAS  Google Scholar 

  • Siegfried BD, Zera AJ (1994) Partial purification and characterization of a greenbug (Homoptera: Aphididae) esterase associated with resistance to parathion. Pestic Biochem Physiol 49: 132–137.

    CAS  Google Scholar 

  • Siegfried BD, Scott JG, Roush RT, Zeichner BC (1990) Biochemistry and genetics of chlorpyrifos resistance in the German cockroach, Blattella germanica (L.). Pestic Biochem Physiol 38:110–121.

    CAS  Google Scholar 

  • Siegfried BD, Swanson J J, Devonshire AL (1997a) Immunological detection of greenbug (Schizaphis graminum) esterases associated with resistance to organophosphate insecticides. Pestic Biochem Physiol 57:165–170.

    CAS  Google Scholar 

  • Siegfried BD, Ono M, Swanson JJ (1997b) Purification and characterization of a carboxylesterase associated with organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Arch Insect Biochem Physiol 36:229–240.

    PubMed  CAS  Google Scholar 

  • Smyth KA (1996) Biochemical and physiological differences in malathion carboxylesterase activities of malathion-susceptible and -resistant lines of the sheep blowfly Lucilia cuprina. Pestic Biochem Physiol 54:48–55.

    CAS  Google Scholar 

  • Soderlund DM (1997) Molecular mechanisms of insecticide resistance. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals, vol 13: Chemistry of plant protection. Springer, Berlin Heidelberg New York, pp 21–56.

    Google Scholar 

  • Soderlund DM, Bloomquist JR (1990) Molecular mechanisms of insecticide resistance. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 58–95.

    Google Scholar 

  • Syvanen M, Zhou ZH, Wang JY (1994) Glutathione transferase gene family from the housefly Musca domestica. Mol Gen Genet 245:25–31.

    PubMed  CAS  Google Scholar 

  • Syvanen M, Zhou ZH, Wharton J, Goldsbury C, Clark A (1996) Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. J Mol Evol 43:236–240.

    PubMed  CAS  Google Scholar 

  • Terriere LC (1984) Induction of detoxication enzymes in insects. Annu Rev Entomol 29:71–88.

    PubMed  CAS  Google Scholar 

  • Townsend MG, Busvine JR (1969) The mechanisms of malathion-resistance in the blowfly, Chrysomya putoria. Entomol Exp Appl 12:243–267.

    CAS  Google Scholar 

  • Vaughan A, Hemingway J (1995) Mosquito carboxylesterase Esta21 (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem 270:17044–17049.

    PubMed  CAS  Google Scholar 

  • Vaughan A, Magdalena R, Hemingway J (1995) The independent gene amplification of electrophoretically indistinguishable B esterases from the insecticide-resistant mosquito Culex quinquefasciatus. Biochem J 305:651–658.

    PubMed  CAS  Google Scholar 

  • Wang JY, McCommas S, Syvanen M (1991) Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet 227:260–266.

    PubMed  CAS  Google Scholar 

  • Ware GW (1994) The pesticide book. Thomson Publications, Fresno.

    Google Scholar 

  • Whyard S, Walker VK (1994) Characterization of malathion carboxylesterase in the sheep blowfly Lucilia cuprina. Pestic Biochem Physiol 50:198–206.

    CAS  Google Scholar 

  • Whyard S, Downe AER, Walker VK (1995) Characterization of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch Insect Biochem Physiol 29:329–342.

    PubMed  CAS  Google Scholar 

  • Wirth M, Marquine M, Georghiou GP, Pasteur N (1990) Esterases A2 and B2 in Culex quinquefasciatus (Diptera: Culicidae): role in organophosphate resistance and linkage. J Med Entomol 27:202–206.

    PubMed  CAS  Google Scholar 

  • Wu D, Scharf ME, Neal JJ, Suiter DR, Bennett GW (1998) Mechanisms of fenvalerate resistance in the German cockroach, Blattella germanica (L.). Pestic Biochem Physiol 61:53–62.

    CAS  Google Scholar 

  • Yu SJ (1996) Insect glutathione S-transferases. Zool Studies 35:9–19.

    CAS  Google Scholar 

  • Zhao G, Liu W, Knowles CO (1994) Mechanisms associated with diazinon resistance in western flower thrips. Pestic Biochem Physiol 49:13–23.

    CAS  Google Scholar 

  • Zhou ZH, Syvanen M (1997) A complex glutathione transferase gene family in the housefly Musca domestica. Mol Gen Genet 256:187–194.

    PubMed  CAS  Google Scholar 

  • Zhu KY, Brindley WA (1992) Significance of carboxylesterase and insensitive acetylcholinesterase in conferring organophosphate resistance in Lygus hesperus populations. Pestic Biochem Physiol 43:223–231.

    CAS  Google Scholar 

  • Zhu KY, Clark JM (1994) Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol 24:453–461.

    CAS  Google Scholar 

  • Zhu KY, Clark JM (1995a) Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol 25:1129–1138.

    PubMed  CAS  Google Scholar 

  • Zhu KY, Clark JM (1995b) Comparisons of kinetic properties of acetylcholinesterase purified from azinphosmethyl-susceptible and -resistant strains of Colorado potato beetle. Pestic Biochem Physiol 51:57–67.

    CAS  Google Scholar 

  • Zhu KY, Clark JM (1997) Validation of a point mutation of acetylcholinesterase in Colorado potato beetle by polymerase chain reaction coupled in enzyme inhibition assay. Pestic Biochem Physiol 57:28–35.

    CAS  Google Scholar 

  • Zhu KY, Lee SH, Clark JM (1996) A point mutation of acetylcholinesterase associated with azin- phosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic Biochem Physiol 55:100–108.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Siegfried, B.D., Scharf, M.E. (2001). Mechanisms of Organophosphate Resistance in Insects. In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics