Skip to main content

Abstract

The solubility of proteins is considered as that proportion of nitrogen in a protein product which is in the soluble state under specific conditions. Solubility is the amount of protein in a sample that dissolves into solution. Proteins recommended as food additives can be partly or completely soluble or completely insoluble in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinsella, J. E. (1976). Functional properties of proteins in food: a survey, Crit. Rev. Food Sci. Nut., 7: 219.

    CAS  Google Scholar 

  2. McGowen, J. C. and Mellors, A. (1979). Relationships between the solubility of amino acids, J. Appl. Biochem., 1: 423.

    Google Scholar 

  3. Hayakawa, S. and Nakai, S. (1985). Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins, J. Food Sci., 50: 486.

    CAS  Google Scholar 

  4. Kinsella, J. E. (1979). Functional properties of soy proteins, J. Am. Oil Chem. Soc., 56: 242.

    CAS  Google Scholar 

  5. Aoki, H., Taneyama, O., and Irrami, M. (1980). Emulsifying properties of soy proteins: characteristics of 7S and 11S proteins, J. Food Sci., 45: 534.

    CAS  Google Scholar 

  6. Li-Chan, E., Nakai, S., and Wood, D. F. (1984). Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties, J. Food Sci., 49: 345.

    CAS  Google Scholar 

  7. Betschart, A. A. (1979). Development of sunflower protein, J. Am. Oil Chem. Soc., 56: 450.

    Google Scholar 

  8. International Dairy Federation (1986). Circular 9.

    Google Scholar 

  9. Mon, C. V., German, B., Kinsella, J. E., Regenstein, J. M., Van Buren, J. P., Kilara, A., Lewis, B. A., and Mangino, M. E. (1985). A collaborative study to develop a standardized food protein solublitiy procedure, J. Food Sci., 50: 1715.

    Google Scholar 

  10. Goll, D. E. (1977). Muscle proteins, In Food Proteins (J. R. Whitaker and S. R. Tannenbaum, eds.), AVI Publishing, Inc., Westport, CT, p. 121.

    Google Scholar 

  11. Honikel, K. O., Fischer, C., Hamid, A., and Hamm, R. (1981). Influence of post-mortem changes in bovine muscle on the WHC of beef. Postmortem storage of muscle at 20 °C, J. Food Sci., 46: 1.

    CAS  Google Scholar 

  12. Buttkus, H. (1974). On the nature of the chemical and physical bonds which contribute to some structural properties of protein foods: a hypothesis, J. Food Sci., 39: 484.

    CAS  Google Scholar 

  13. Chen, M. T., Ockerman, H. W., Cahill, V. R., Plimpton, R. F. Jr., and Parrett, N. A. (1981). Solubility of muscle proteins as a result of autolysis and microbiological growth, J. Food Sci., 46: 1139.

    Google Scholar 

  14. Aberle, G. E. and Merkel, R. A. (1966). Solubility and electrophoretic behavior of some proteins of post-mortem aged bovine muscle, J. Food Sci., 31: 151.

    CAS  Google Scholar 

  15. Miller, A. T., Karmas, E., and Fu Lu, M. (1983). Age-related changes in the collagen of bovine corium: studies on extractability, solubility and molecular size distribution, J. Food Sci., 48: 681.

    CAS  Google Scholar 

  16. Asghar, A. and Yeates, N. T. M. (1979). Muscle characteristics and meat quality of lambs grown on different nutritional planes, 2. Chemical and biochemical effects, Agri. Biol. Chem., 43: 437.

    CAS  Google Scholar 

  17. Wu, J. J., Dutson, T. R., and Carpenter, Z. L. (1981). Effect of post-mortem time and temperature on the release of lysosomal enzymes and their possible effect on bovine connective tissue components of muscle, J. Food Sci., 46: 1132.

    CAS  Google Scholar 

  18. Cronlund, A. L. and Woychik, J. H. (1987). Solubilization of collagen in restructured beef with collagenases and a-amylase, J. Food Sci., 52: 857.

    CAS  Google Scholar 

  19. Bonnet, M. and Kopp, J. (1984). Essai d’attendrissage de la viande: de rnjection d’une collagenase bacterienne non pathogene sur la tendrate de muscles riches en collagene, Sci. Aliments, 4: 213.

    CAS  Google Scholar 

  20. Siegel, D. G. and Schmidt, G. R. (1979). Crude myosin fractions as meat binders, J. Food Sci., 44: 1129.

    CAS  Google Scholar 

  21. Theno, D. M., Siegel, D. G., Schmidt, G. R., and Norton, H. W. (1978). Meat massaging: The effects of salt, phosphate and massaging on cooking loss, binding strength and exudate composition in sectioned and formed ham, J. Food Sci., 43: 331.

    Google Scholar 

  22. Prusa, K. J. and Bowers, J. A. (1984). Protein extraction from frozen, thawed turkey muscle with sodium nitrite, sodium chloride, and selected sodium phosphate salts, J. Food Sci., 49: 709.

    CAS  Google Scholar 

  23. Knipe, C. L., Olson, D. G., and Rust, R. E. (1985). Effects of selected inorganic phosphates, phosphate levels and reduced sodium chloride levels on protein solubility, stability and pH of meat emulsions, J. Food Sci., 50: 1010.

    CAS  Google Scholar 

  24. Offer, G. and Knight, P. (1988). The structural basis of water binding in meat. Part 1: General principles and water uptake in meat processing, In Developments in Meat Science, 4th ed., Lawrie R. Elsevier, Applied Science Publishers, London, p. 63.

    Google Scholar 

  25. Paterson, B. C., Parrish, F. C., and Stromer, M. H. (1988). Effects of salt and pyrophosphate on the physical and chemical properties of beef muscle, J. Food Sci., 53: 1258.

    CAS  Google Scholar 

  26. Asghar, A. and Henrickson, R. L. (1982). Functional properties of food-grade bovine hide collagen in coarse bologna. 2. Effect on different protein fraction, J. Food Quality, 5: 271.

    Google Scholar 

  27. Etheridge, P. A., Hickson, D. W., Young, C. R., Landmann, W. A., and Dill, C. W. (1981). Functional and chemical characteristics of bovine plasma proteins isolated as a metaphosphate complex, J. Food Sci, 46: 1782.

    CAS  Google Scholar 

  28. Shahidi, F., Naczk, M., Rubin, L. J., and Diosady, L.L. (1984), Functional properties of blood globin, J. Food Sci, 49: 370.

    CAS  Google Scholar 

  29. Delaney, R. A. M. (1977). Protein concentrates from slaughter animal blood. II. Composition and properties of spray dried red blood cell concentrates, J. Food Technol., 12: 355.

    CAS  Google Scholar 

  30. Cheng, C. S. and Parrish, F. C. Jr. (1979). Heat-induced changes in myofibrillar proteins of bovine longissimus muscle, J. Food Sci., 44: 22.

    CAS  Google Scholar 

  31. Li-Chan, E., Nakai, S., and Wood, D. F. (1985). Relationship between functional (fat binding, emulsifying) and physicochemical properties of muscle proteins. Effects of heating, freezing, pH and species, J. Food Sci., 50: 1034.

    CAS  Google Scholar 

  32. Kenney, P. B., Henrickson, R. L., Claypool, P. L., and Rao, B. R. (1986). Influence of temperature, time and solvent on the solubility of corium collagen and meat proteins, J. Food Sci., 51: 277.

    CAS  Google Scholar 

  33. Bouton, P. E., Harris, P. V., and Ratcliff, D. (1981). Effect of cooking temperature and time on the shear properties of meat, J. Food Sci., 46: 1082.

    Google Scholar 

  34. Zayas, J. F. and Naewbanij, J. O. (1986). The influence of microwave heating on the textural properties of meat and collagen solubilization, J. Food Proc. and Pres., 10: 203.

    CAS  Google Scholar 

  35. Peng, I. C. and Nielsen, S. S. (1986). Protein-protein interactions between soybean bconglycinin (B1–B6) and myosin, J. Food Sci., 51: 588.

    CAS  Google Scholar 

  36. Hayakawa, S., Ogawa, T., and Sato, Y. (1982). Some functional properties under heating of the globin prepared by carboxymethyl cellulose procedure. J. Food Sci., 47: 1415.

    CAS  Google Scholar 

  37. Kim, H. J., Loveridge, V. A., and Taub, I.A., (1984). Myosin cross-linking in freeze-dried meat, J. Food Sci., 49: 699.

    CAS  Google Scholar 

  38. Wagner, J. R. and Anon, M. C. (1986). Effect of frozen storage on protein denaturation in bovine muscle. II. Influence on solubility, viscosity and electrophoretic behaviour of myofibrillar proteins, J. Food Technol., 2: 547.

    Google Scholar 

  39. Nusbaum, R. P., Sebranek, J. G., Topel, D. G., and Rust, R. E. (1983). Structural and palatability relationships in frozen ground beef patties as a function of freezing treatments and product formulation, Meat Sci., 8: 135.

    CAS  Google Scholar 

  40. Park, J. W., Lanier, T. C., Keeton, J. T., and Hamann, D. D. (1987). Use of cryoprotectants to stabilize functional properties of prerigor salted beef during frozen storage, J. Food Sci., 52: 537.

    CAS  Google Scholar 

  41. Xiong, Y.L. and Blanchard, S.P. (1993). Functional properties of myofibrillar proteins from cold-shortened and thaw-rigor muscles, J. Food Sci., 58: 720.

    CAS  Google Scholar 

  42. Borderias, A. J., Colmenero, J. F., and Tejada, M. (1985). Viscosity and emulsifying ability of fish and chicken muscle protein, J. Food Technol., 20: 31.

    CAS  Google Scholar 

  43. Jiang, S. T., Hwang, D. C., and Chen, C. S. (1988). Effect of storage temperatures on the formatin of disulfides and denaturation of milkfish actomyosin (Chanos chanos), J. Food Sci., 53: 1333.

    CAS  Google Scholar 

  44. Jiang, S. T., Ho, M. L., and Lee, T. C. (1985), Optimization of the freezing conditions on mackerel and amberfish for manufacturing minced fish, J. Food Sci., 50: 727.

    CAS  Google Scholar 

  45. Owusu-Ansah, Y. J. and Hultin, H. O. (1992). Differential insolubilization of red hake muscle proteins during frozen storage, J. Food Sci., 57: 265.

    CAS  Google Scholar 

  46. Jiang, S. T. and Lee, T. C. (1985). Changes in free amino acids and protein denaturation of fish muscle during frozen storage, J. Agric. Food Chem., 33: 839.

    CAS  Google Scholar 

  47. Krivchenia, M. and Fennema, O. (1988). Effect of cryoprotectants on frozen whitefish fillets, J. Food Sci., 53: 999.

    CAS  Google Scholar 

  48. Jiang, S. T., Hwang, D. C., and Chen, C. S. (1988). Denaturation and change in SH group of actomyosin from milkfish during frozen storage at -20 °C, J. Agric. Food Chem., 36: 433.

    CAS  Google Scholar 

  49. Matsumoto, J. J. (1980). Chemical deterioratin of muscle proteins during frozen storage, ACS Symp. Series, 123: 95–124.

    CAS  Google Scholar 

  50. Stefanson, G. and Hultin, H. O. (1992). Fish muscle myofibrillar proteins are soluble in water, Book of Abstracts, IFT Annual Meeting, New Orleans, p. 43.

    Google Scholar 

  51. Pai, D. J. K. and Parkin, K. L. (1992). Reactivity of 14C-formaldehyde with proteins of minced frozen red hake muscle, Book of Abstracts, IFT Annual Meeting, New Orleans, p. 43.

    Google Scholar 

  52. Ang, J. F. and Hultin, H. O. (1989). Denaturation of cod myosin during freezing after modification with formaldehyde, J. Food Sci., 54: 814.

    CAS  Google Scholar 

  53. Owusu-Ansah, Y. J. and Hultin, H. O. (1986). Chemical and physical changes in red hake fillets during frozen storage, J. Food Sci., 51: 1402.

    CAS  Google Scholar 

  54. Vidya Sagar Reddy, G., and Srikar, L. N. (1991). Preprocessing ice storage effects on functional properties of fish mince protein, J. Food Sci., 56: 965.

    Google Scholar 

  55. Suzuki, T. (1981). Fish and Krill Protein: Processing and Technology, Applied Science Publishers LTD, London.

    Google Scholar 

  56. Smith, D. M. and Brekke, C. J. (1985). Enzymatic modification of the structure and functional properties of mechanically deboned fowl proteins, J. Agric. Food Chem., 33: 631.

    CAS  Google Scholar 

  57. Elkhalifa, E. A., Graham, P. P., Marriott, N. G., and Phelps, S. K. (1988). Color characteristics and functional properties of flaked turkey dark meat as influenced by washing treatments, J. Food Sci., 53: 1068.

    Google Scholar 

  58. Ozimek, G., Jelen, P., Ozimek, L., Sauer, W., and McCurdy, S. M. (1986). A comparison of mechanically separated and alkali extracted chicken protein fat functional and nutritional properties, J. Food Sci., 51: 748.

    Google Scholar 

  59. Lakritz, L., Carroll, R. J., Jenkins, R. K., and Maerker, G. (1987). Immediate effect of ionizing radiation on the structure of unfrozen bovine muscle tissue, Meat Sci., 20: 107.

    CAS  Google Scholar 

  60. Hajos, G. and Delincee, H. (1983). Structural investigation of radiation-induced aggregates of ribonuclease, Int. J. Radiat. Biol., 44: 333.

    CAS  Google Scholar 

  61. Simic, M. G. (1983). Isolation and characterization of radiation-induced aliphatic peptide dimers, Int. J. Radiat. Biol., 44: 231.

    Google Scholar 

  62. Schuessler, H. and Schilling, K. (1984). Oxygen effect in the radiolysis of protein. Part II: Bovine serum albumin, Int. J. Radiat. Biol., 37: 71.

    Google Scholar 

  63. Krumhar, K. C., and Berry, J. W. (1990). Effect of antioxidant and conditions on solubility of irradiated food proteins in aqueous solution, J. Food Sci., 55: 1127.

    CAS  Google Scholar 

  64. Zabielski, J., Kijowski, J., Fiszer, W., and Niewiarowicz, A. (1984). The effect of irradiation on technological properties and protein solubility of broiler chicken meat, J. Sci. Food Agric., 35: 662.

    CAS  Google Scholar 

  65. Hayashi, T., Biagio, R.,Saito, M., Todoriki, S., and Tajima, M. (1991). Effect of ionizing radiation on sterility and functional qualities of dehydrated blood plasma, J. Food Sci., 56: 168.

    Google Scholar 

  66. Schmidt, R. H., Packard, V. S., and Morris, H. A. (1984). Effect of processing on whey protein functionality, J. Dairy Sci., 67: 2723.

    CAS  Google Scholar 

  67. Kinsella, J. E. (1984). Milk proteins: physicochemical and functional properties, CRC Crit. Rev. Food Sci. Nutr., 21: 197.

    CAS  Google Scholar 

  68. Morr, C. V. (1984). Production and use of milk proteins in food, Food Technol., 38: 39.

    Google Scholar 

  69. Schmidt, R. H. and Morris, H. A. (1984). Gelation properties of milk proteins, soy proteins and blended protein systems, Food Technol., 38: 85.

    Google Scholar 

  70. Hung, S. C. and Zayas, J. F. (1992). Protein solubility, water retention and fat binding of CGPF compared to milk proteins, J. Food Sci., 57: 372.

    CAS  Google Scholar 

  71. Pearce, R. J. (1987). Fractionation of whey proteins, Int. Dairy Fed. Bul., 212: 150.

    CAS  Google Scholar 

  72. Augustine, M. E. and Baianu, I. C. (1987). Basic studies of corn proteins for improved solubility and future utilization: a physicochemical approach, J. Food Sci., 52: 649.

    CAS  Google Scholar 

  73. Barbieri, R. and Casiraghi, E. M. (1983). Production of a good grade flour from defatted corn germ meal, J. Food Technol., 18: 35.

    CAS  Google Scholar 

  74. Li-Chan, E. (1983). Heat-induced changes in the proteins of whey protein concentrate, J. Food Sci., 48: 47.

    Google Scholar 

  75. Kosaric, N. and Ng, D. C. M. (1983). Some functional properties of milk protein calcium co-precipitates, Can. Inst. Food Sci. Technol. J., 16 (2): 141

    CAS  Google Scholar 

  76. de Haast, J., Morressey, P. A., and Fox, P. F. (1987). Protein co-precipitates from milk and blood plasma: preparation and investigation of some functional properties, J. Sci. Food Agric., 39: 253.

    Google Scholar 

  77. Konstance, R. P. and Strange, E. D. (1991). Solubility and viscous properties of casein and caseinates, J. Food Sci., 56: 556.

    CAS  Google Scholar 

  78. Van Hekken, D.L. and Strange, E.D. (1993). Functional properties of dephosphorylated bovine whole casein, J. Dairy Sci., 76:3384.

    Google Scholar 

  79. Lee, S. Y., Morr, C. V., and Ha, E. Y. W. (1992). Structural and functional properties of caseinate and whey protein isolate as affected by temperature and pH, J. Food Sci., 57: 1210.

    CAS  Google Scholar 

  80. Murphy, J. M. and Fox, P. F. (1990). Functional properties of asl-K- or b-rich casein fractions, Food Chem., 39: 211.

    Google Scholar 

  81. Lonergan, D. A. (1983). Isolation of casein by ultrafiltration and cryodestabilization, J. Food Sci., 48: 1817.

    CAS  Google Scholar 

  82. Moon, T. W., Peng, I. C., and Lonergan, D. A. (1989). Functional properties of cryocasein, J. Dairy Sci., 72:815.

    CAS  Google Scholar 

  83. Beck, A. M. (1981). The physical and chemical properties of whey proteins, Dairy Industries International, 46 (11): 25.

    Google Scholar 

  84. Pepper, D. and Pain, L. H. (1987). Concentration of whey by reverse osmosis-ultrafiltration, Bull. I.D.F., 212: 25.

    Google Scholar 

  85. Hsu, K. H. and Fennema, O. (1989). Changes in the protein functionality of dry whey protein concentrate during storage, J. Dairy Sci., 72: 829.

    Google Scholar 

  86. Burgess, K. J. and Kelly, J. (1979). Technical note: selected functional properties of a whey protein isolate, J. Food Technol., 14: 325.

    CAS  Google Scholar 

  87. Morr, C. V. and Foegeding, E. A. (1990). Composition and functionality of commercial whey and milk protein concentrates and isolates: A status report, Food Technology, 4: 100.

    Google Scholar 

  88. Slack, A. W., Amundson, C. H., and Hill, Jr., C. G. (1986). Nitrogen solubilities of ßlactoglobulin and a-lactalbumin enriched fractions derived from ultrafiltered cheese whey retentates, J. Food Proc. and Preserv., 10: 31.

    CAS  Google Scholar 

  89. Akita, E. M. and Nakai, S. (1990). Lipophilization of l-lactoglobulin: Effect on hydrophobicity, conformation and surface functional properties, J. Food Sci., 55: 711.

    CAS  Google Scholar 

  90. De Wit, J. N. and Klarenbeek, G. (1984). Effects of heat treatments on structure and solubility of whey proteins, J. Dairy Sci., 67: 2701.

    Google Scholar 

  91. Melachouris, N. (1984). Critical aspects in development of whey protein concentrate, J. Dairy Sci., 67: 2693.

    CAS  Google Scholar 

  92. Nakai, S. and Li-Chan, E. (1985). Structure modification and functionality of whey proteins: Quantitative structure - activity relationship approach, J. Dairy Sci., 68: 2763.

    CAS  Google Scholar 

  93. Modler, H. W. and Jones, J. D. (1987). Selected processes to improve the functionaltiy of dairy ingredients, Food Technol., 10: 114.

    Google Scholar 

  94. Douglas, Jr., F. W., Greenberg, R., Farrell, H. M., and Edmondson, L. F. (1981). Effects of ultra-high temperature pasteurization on milk proteins, J. Agric. Food Chem., 29: 11.

    CAS  Google Scholar 

  95. Kitabatake, N., Cuq, J. L. and Cheftel, J. C. (1985). Covalent binding of glycosyl residues to 1-lactoglobulin: Effects on solubility and heat stability, J. Agric. Food Chem., 33: 125.

    CAS  Google Scholar 

  96. Watanabe, K., Hayakawa, S., Matsuda, T. and Nakamura, R. (1986). Combined effect of pH and sodium chloride on the heat-induced aggregation of whole egg proteins, J. Food Sci., 51: 1112.

    CAS  Google Scholar 

  97. Kakalis, L. T. and Regenstein, J. M. (1986). Effect of pH and salts on the solubility of egg white protein, J. Food Sci., 51: 1445.

    CAS  Google Scholar 

  98. Dyer-Hurdon, J.N. and Nnanna, I.A. (1993). Cholesterol content and functionality of plasma and granules fractionated from egg yolk. J. Food Sci., 58:1277.

    CAS  Google Scholar 

  99. Ball, Jr., H. R., Hamid-Samimi, M., Foegeding, P. M., and Swartzel, K. R. (1987). Functionality and microbial stability of ultrapasteurized, aseptically packaged refrigerated whole egg, J. Food Sci., 52: 1212.

    Google Scholar 

  100. Mizutani, R. and Nakamura, R. (1987). Emulsifying properties of a complex between apoprotein from hen’s egg yolk low density lipoprotein and egg yolk lecithin, Agric. Biol. Chem., 51: 1115.

    CAS  Google Scholar 

  101. Gassman, B. (1983). Preparation and application of vegetable proteins from sunflower seed for human consumption. An approach, Nahrung, 27: 351.

    Google Scholar 

  102. Howard, P. A., Campbell, M. F., and Zollinger, D. T. (1980). U.S. Patent 4,234,620.

    Google Scholar 

  103. Elgedaily, A., Campbell, A. M., and Penfield, M. P. (1982). Solubility and water absorption of systems containing soy protein isolates, salt and sugar, J. Food Sci., 47: 806.

    CAS  Google Scholar 

  104. Wang, C. R. and Zayas, J. F. (1991). Water retention and solubility of soy proteins and corn germ proteins in a model system, J. Food Sci., 56: 455.

    CAS  Google Scholar 

  105. Hayakawa, S. and Nakai, S. (1985). Relationship of hydrophobicity and net charge to the solubility of milk and soy proteins, J. Food Sci., 50: 486.

    CAS  Google Scholar 

  106. Wagner, J. R. and Anon, M. C. (1990). Influence of denaturation, hydrophobicity and sulthydryl content on solubility and water absorbing capacity of soy protein isolates, J. Food Sci., 55: 765.

    CAS  Google Scholar 

  107. Berardi, L. C. and Cherry, J. P. (1981). Functional properties of co-precipitated protein isolates from cottonseed, soybean and peanut flours, Can. Inst. Food Sci. Technol. J., 14(4): 283.

    CAS  Google Scholar 

  108. Yao, J. J., Tanteerataram, K., and Wei, L. S. (1990). Effects of maturation and storage on solubility, emulsion stability and gelation properties of isolated soy proteins, J.A.O.C.S., 67: 974.

    CAS  Google Scholar 

  109. Saio, K., Kobayakawa, K., and Kito, M. (1982). Protein denaturation during model storage studies of soybeans and meals, Cereal Chem., 59: 408.

    CAS  Google Scholar 

  110. Fukushima, D. (1980). Deteriorative changes of proteins during soybean food processing and their use in foods, In Chemical Deterioration of Proteins (J. R. Whitaker, ed.), American Chemistry Society, p.211.

    Google Scholar 

  111. Arce, C. B., Pilosof, A. M. R., and Bartholomai, G. B. (1991). Sodium dodecyl sulfate and sulfite improve some functional properties of soy protein concentrates, J. Food Sci., 56: 113.

    CAS  Google Scholar 

  112. Nakai, S., Ho, L., Tung, M. A., and Quinn, J. R. (1980). Solubilization of rapeseed, soy and sunflower protein isolates by surfactant and proteinase treatments, Can. Inst. Food Sci. Technol. J., 13: 14.

    CAS  Google Scholar 

  113. Hamada, J. S. and Marshall, W. E. (1989). Preparation and functional properties of enzymatically deamidated soy proteins, J. Food Sci., 54: 598.

    CAS  Google Scholar 

  114. Sung, H. Y., Chen, H. J., Liu, T. Y., and Su, J. C. (1983). Improvement of the functionality of soy protein by introduction of new thiol groups through a papaincatalyzed acylation, J. Food Sci., 48: 708.

    CAS  Google Scholar 

  115. Sung, H. Y., Chen, H. J., Liu, T. Y., and Su, J. C. (1983). Improvement of the functionalities of soy protein isolate through chemical phosphorylation, J. Food Sci., 48: 716.

    CAS  Google Scholar 

  116. Lawhon, J. T., Manak, L. J., Rhee, K. C., Rhee, K. S., and Lusas, W. L. (1981). Combining aqueous extraction and membrane isolation techniques to recover protein and oil from soybeans, J. Food Sci., 46: 912.

    CAS  Google Scholar 

  117. Hafez, Y. S., Mohamed, A. I., Singh, G., and Hewedy, F. M. (1985). Effects of gamma irradiation on proteins and fatty acids of soybean, J. Food Sci., 50: 1271.

    CAS  Google Scholar 

  118. Wang, L. C. (1984). Ultrasonic extraction of a heat-labile 7S protein fraction from autoclaved, defatted soybean flakes, J. Food Sci., 49: 551.

    CAS  Google Scholar 

  119. Furukawa, T. and Ohta, S. (1983). Solubility of isolated soy protein in ionic environments and an approach to improve its profile, Agric. Biol. Chem., 47(4): 751.

    CAS  Google Scholar 

  120. Basha, S. M. (1988). Resolution of peanut seed proteins by high-performance liquid chromatography, J. Agric. Food Chem., 36: 778.

    CAS  Google Scholar 

  121. Monteiro, P.V. and Prakash, V. (1994). Functional properties of homogeneous protein fractions from peanut (Arachis hypogala L.), J. Agric. Food Chem., 42: 274.

    CAS  Google Scholar 

  122. Kim, N. M., Kim, Y. J., and Nam, Y. J. (1992). Characteristics of functional properties of protein isolates from various peanut (Arachis hypogaea L.) cultivars, J. Food Sci., 57: 407.

    Google Scholar 

  123. Sundar, R. S. and Rao, D. R. (1978). Functional properties of native and acylated peanut proteins prepared by different methods, Lebensm.-Wiss. u.-Technol., 11: 188.

    CAS  Google Scholar 

  124. Cherry, J. P., McWatters, K. H., and Holmes, M. R. (1975). Effect of moist heat on solubility and structural components of peanut proteins, J. Food Sci., 40: 1199.

    CAS  Google Scholar 

  125. Chiou, R. Y. Y., Beuchat, L. R., and Phillips, R. D. (1985). Functional and physical property characterization of peanut milk proteins partially hydrolyzed by immobilized papain in a continuous reactor, J. Agric. Food Chem., 33: 1109.

    CAS  Google Scholar 

  126. Prinyawaiwatkul, W., Beuchat, L.R., and McWatters, K.H. (1993). Functional property changes in partially defatted peanut flour caused by fungal fermentation and heat treatment, J. Food Sci., 6: 1318.

    Google Scholar 

  127. Swanson, B. G. (1990). Pea and lentil protein extraction and functionality, J.A.O.C.S., 67: 276.

    CAS  Google Scholar 

  128. Paredes-Lopez, O., Ordorica-Falomir, C., and Olivares-Vazquez, M. R. (1991). Chickpea protein isolates: Physicochemical, functional and nutritional characterization, J. Food Sci., 56: 726.

    CAS  Google Scholar 

  129. Sefa-Dedeh, S. and Stanley, D. (1979). Cowpea proteins. 1. Use of response surface methodology in predicting cowpea (Vigna unguiculata) protein extractability, J. Agric. Food Chem., 27(6): 1238.

    CAS  Google Scholar 

  130. Koyoro, H. and Powers, J. R. (1987). Functional properties of pea globulin fractions, Cereal Chem., 64(2): 97.

    CAS  Google Scholar 

  131. Naczk, M., Rubin, L. J., and Shahidi, F. (1986). Functional properties and phytate content of pea protein preparations, J. Food Sci., 51: 1245.

    CAS  Google Scholar 

  132. Sosulski, F. W. and McCurdy, A. R. (1987). Functionality of flours, protein fractions and isolates from field peas and faba bean, J. Food Sci., 52: 1010.

    Google Scholar 

  133. Idouraine, A., Jensen, S. B., and Weber, C. W. (1991). Tepary bean flour albumin and globulin fractions functional properties compare with soy protein isolate, J. Food Sci., 56: 1316.

    CAS  Google Scholar 

  134. Sathe, S. K., Deshpande, S. S., and Salunkhe, D. K. (1983). Functional properties of black gram (Phaseolus Mungo L.) proteins, Lebensm.-Wiss. u: Technol., 16: 69.

    CAS  Google Scholar 

  135. Borhade, V. P., Kadam, S. S., and Salunkhe, D. K. (1984). Solubilization and functional properties of moth bean Vigna Aconitifolia (Jacq.) marechal and horse gram Macrotyloma uniflorum (Lam.) Verdc. proteins, J. Food Biochem., 8: 229.

    CAS  Google Scholar 

  136. Han, J. Y. and Khan, K. (1990). Functional properties of pinmilled and air-classified dry edible bean fractions, Cereal Chem., 67(4): 390.

    CAS  Google Scholar 

  137. Pilosof, A. M. R., Bartholamai, G. B., Chirife, J., and Boguet, R. (1982). Effect of heat treatment on sorption isotherms and solubility of flour and protein isolates from bean Phaseolus vulgaris, J. Food Sci., 47: 1288.

    Google Scholar 

  138. Gujska, E. and Khan, K. (1991). High temperature extrusion effects on protein solubility and distribution in navy and pinto beans, J. Food Sci., 56: 1013.

    CAS  Google Scholar 

  139. Sumner, A. K., Nielsen, M. A., and Youngs, C. G. (1981). Production and evaluation of pea protein isolate, J. Food Sci., 46: 364.

    CAS  Google Scholar 

  140. Narayana, K. and Narasinga Rao, M. S. (1984). Effect of acetylation and succinylation on the functional properties of winged bean (Psophocarpus tetragonolobus) flour, J. Food Sci., 49: 547.

    CAS  Google Scholar 

  141. Carbonaro, M., Vcchini, P., and Carnovale, E., (1993). Protein solubility of raw and cooked beans (phaseolus vulgaris): Role of the basic residues, J. Agric. Food Chem., 41: 1169.

    CAS  Google Scholar 

  142. Schaffner, D. W. and Beuchat, L. R. (1986). Functional properties of freeze-dried powders of unfermented and fermented aqueous extracts of legume seeds, J. Food Sci., 51: 629.

    Google Scholar 

  143. Canella, M., Bernardi, A., Castriotta, G., and Russomanno, G. (1984). Functional properties of fermented sunflower meal, Lebensm.-Wiss. u.-Technol., 17: 146.

    CAS  Google Scholar 

  144. Tasneem, R., Ramamani, S., and Subramanian, N. (1982). Functional properties of guar seed (Cyamopsis tetragonoloba) meal detoxified by different methods, J. Food Sci., 47: 1323.

    CAS  Google Scholar 

  145. Cheryan, M. (1980). Phytic acid interactions in food systems, CRC Crit. Rev. Food Sci. Nutr., 13: 297.

    CAS  Google Scholar 

  146. Nuzullo, C., Vignola, R., and Groggin, A. (1980). U.S. Patent No. 4,212,799.

    Google Scholar 

  147. Saeed, M. and Cheryan, M. (1988). Sunflower protein concentrates and isolates low in polyphenols and phytate, J. Food Sci., 53: 1127.

    CAS  Google Scholar 

  148. Canella, M., Castriotta, G., Bernardi, A., and Boni, R. (1985). Functional properties of individual sunflower albumin and globulin, Lebensm.-Wiss. u.-Technol., 18: 288.

    CAS  Google Scholar 

  149. Rossi, M. and Germondari, I. (1982). Production of a food-grade protein meal from defatted sunflower. II. Functional properties evaluation, Lebensm.-Wiss. u.-Technol., 15: 313.

    Google Scholar 

  150. Augustine, M. E. and Baianu, I. C. (1984). Analysis of amino acid composition of cereal and soy proteins by high-field carbon-13 nuclear magnetic resonance and ion-exchange chromatography, Proc. Fed. Amer. Soc. Exp. Biol., 43(3): 672.

    Google Scholar 

  151. Barbieri, R. and Casiraghi, E. M. (1983). Production of a food grade flour from defatted corn germ meal, J. Food Technol., 18: 35.

    CAS  Google Scholar 

  152. Christianson, D. D., Friedrich, J. P., List, G. R., Warner, K., Bagley, E. B., Stringfellow, A. C., and Inglett, G. E. (1984). Supercritical fluid extraction of dry-milled corn germ with carbon dioxide, J. Food Sci., 49: 229.

    Google Scholar 

  153. Lucisano, M., Casiraghi, E. M., and Barbieri, R. (1984). Use of defatted corn germ flour in pasta products, J. Food Sci., 49: 482.

    Google Scholar 

  154. Zayas, J. F. and Lin, C. S. (1989). Protein solubility of two hexane-defatted corn germ proteins and soy protein, J. of Food Proc. and Preserv., 13(3): 161.

    CAS  Google Scholar 

  155. Messinger, J. K., Rupnow, J. H., Zeece, M. G., and Anderson, R. L. (1987). Effect of partial proteolysis and succinylation on functionality of corn germ protein isolate, J. Food Sci., 52: 1620.

    CAS  Google Scholar 

  156. Lin, C. S. and Zayas, J. F. (1987). Protein solubility, emulsifying stability and capacity of two defatted corn germ proteins, J. Food Sci., 52: 1615.

    Google Scholar 

  157. Bera, M. B. and Mukherjee, R. K. (1989). Solubility, emulsifying, and foaming properties of rice bran protein concentrates, J. Food Sci., 54: 143.

    Google Scholar 

  158. Marco, C., Gactano, C., Adriano, B., and Renzo, B. (1985). Functional properties of individual sunflower albumin and globulin, Lebensm.-Wiss. u.-Technol., 18: 288.

    Google Scholar 

  159. Abdel-Aal, E. S. M., Yousssef, M. M., Adel-Shehata, A., and El-Mandy, A. R. (1986). Extractability and functionality of rice proteins and their application as meat extenders, Food Chem., 20: 79.

    CAS  Google Scholar 

  160. Ohlson, R. (1985). Rapeseed, In New Food Proteins, v. 5 (A. M. Altschul and H. L. Wilcke, eds.), Academic Press, Inc., p. 339.

    Google Scholar 

  161. Dev., D. K., and Mukherjee, K. D. (1986). Functional properties of rapeseed protein products with varying phytic acid contents, J. Agric. Food Chem., 34: 775.

    CAS  Google Scholar 

  162. Thompson, L. U., Liu, R. F. K., and Jones, J. D. (1982). Functional properties and food applications of rapeseed protein concentrate, J. Food Sci., 47: 1175.

    Google Scholar 

  163. Nakai, S., Ho, L., Tung, M. A., and Quinn, S R. (1980). Solubilization of rapeseed, soy and sunflower protein isolates by surfactant and proteinase treatments, Can. Inst. Food Sci. Technol. J., 13: 8.

    Google Scholar 

  164. Thompson, L. U. and Cho, Y. S. (1984). Chemical composition and functional properties of acylated phytate rapeseed protein isolate, J. Food Sci., 49: 1584.

    CAS  Google Scholar 

  165. Rahma, E. H. and Narasinga Rao, M. S. (1984). Gossypol removal and functional properties of protein produced by extraction of glanded cottonseed with different solvents, J. Food Sci., 49: 1057.

    CAS  Google Scholar 

  166. Choi, Y. R., Lusas, E. W., and Rhee, K. C. (1982). Effects of acylation of defatted cottonseed flour with various acid anhydrides on protein extractability and functional properties of resulting protein isolates, J. Food Sci., 47: 1713.

    CAS  Google Scholar 

  167. Choi, Y. R., Lusas, E. W., and Rhee, K. C. (1981). Effect of succinylation of cottonseed flour during protein extraction on the yield and some of the quality properties of protein isolates, J.A.O.C.S., 58: 1044.

    CAS  Google Scholar 

  168. Choi, Y. R., Lusas, E. W., and Rhee, K. C. (1983). Molecular structure and functionalities of protein isolates prepared from defatted cottonseed flour succinylated at various levels, J. Food Sci., 48: 1275.

    CAS  Google Scholar 

  169. Ma, C.-Y. and Harwalkar, V. R. (1984). Chemical characterization and functionality assessment of oat protein fraction, J. Agric. Food Chem., 32: 144.

    CAS  Google Scholar 

  170. Chang, P. R. and Sosulski, F. W. (1985). Functional properties of dry milled fractions from wild oats (Avenua fatua L.), J. Food Sci., 50: 1143.

    CAS  Google Scholar 

  171. Tatham, A. C. and Shewry, P. R. (1985). The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of a-, b-, g-, and w-gliadins, J. Cereal Sci., 3: 103.

    CAS  Google Scholar 

  172. Oomah, B. D. and Mathieu, J. J. (1987). Functional properties of commercially produced wheat flour solubles, Can. Inst. Food Sci. Technol. J., 20(2): 81.

    CAS  Google Scholar 

  173. Bolnedi, V., Zayas, J.F. Influence of pH and temperature on water retention and protein solubility of wheat germ protein flour. Annual IFT Meeting, Chicago, 1993, p. 160.

    Google Scholar 

  174. Kobrehel, K. and Bushuk, W. (1977). Studies of glutenin. X. Effect of fatty acids and their sodium salts on solubility in water, Cereal Chem., 54(4): 833.

    CAS  Google Scholar 

  175. Jeanjean, M. F., Damidaux, R., and Feillet, P. (1980). Effect of heat treatment on protein solubility and viscoelastic properties of wheat gluten, Cereal Chem., 57(5): 325.

    Google Scholar 

  176. Rivas, R., Dench, J. E., and Caygill, J. (1981). Nitrogen extractability of sesame (Sesamum indicum L.) seed and the preparation of two protein isolates, J. Sci. Food Agric., 32: 565.

    Google Scholar 

  177. Paredes-Lopez, O. and Ordorica-Falomir, C. (1986). Production of safflower protein isolates: composition, yield, and protein quality, J. Sci. Food Agric., 37: 1097.

    CAS  Google Scholar 

  178. Latha, T. S. and Prakash, V. (1984). Studies on the proteins from safflower seed (Carthamus tinctorius L.), J. Agric. Food Chem., 32: 1412.

    CAS  Google Scholar 

  179. Dev, D. K. and Quensel, E. (1988). Preparation and functional properties of linseed protein products containing differing levels of mucilage, J. Food Sci., 53: 1834.

    CAS  Google Scholar 

  180. Madhusudhan, K. T. and Singh, N. (1985). Effect of heat treatment on the functional properties of linseed meal, J. Agric. Food Chem., 33: 1222.

    CAS  Google Scholar 

  181. Knuckles, B. E. and Kohler, G. O. (1982). Functional properties of edible protein concentrates from alfalfa, J Agric. Food Chem., 30: 748.

    CAS  Google Scholar 

  182. Fiorentini, R. and Galoppini, C. (1981). Pilot plant production of an edible alfalfa protein concentrate, J. Food Sci., 46: 1514.

    Google Scholar 

  183. Oomah, B. D. and Bushuk, W. (1983). Characterization of lupine proteins, J. Food Sci., 48: 38.

    CAS  Google Scholar 

  184. Tasneem, R. and Subramanian, N. (1986). Functional properties of guar (Cyamopsis tetragonoloba) meal protein, J. Agric. Food Chem., 34: 850.

    CAS  Google Scholar 

  185. Jackman, R. L. and Yada, R. Y. (1988). Functional properties of whey-potato protein composite blends in a model system, J. Food Sci., 53: 1427.

    CAS  Google Scholar 

  186. Mowlah, G., Takano, K., Kamoi, I., and Obara, T. (1982). Physico-chemical properties and protein behaviour of banana as effected by processing treatments and conditions, Lebensm.-Wiss. u.-Technol., 15: 211.

    CAS  Google Scholar 

  187. Ige, M. M., Ogunsua, A. 0., and Oke, O. L. (1984). Functional properties of the proteins of some Nigerian oilseeds: Conophor seeds and three varieties of melon seeds, J. Agric. Food Chem., 32: 822.

    CAS  Google Scholar 

  188. Fliedel, G. and Kobrehel, K. (1985). Studies on sorghum proteins. 1. Solubilization of proteins with soaps, J. Agric. Food Chem., 33: 303.

    CAS  Google Scholar 

  189. Huang, Y. T. and Kinsella, J. E. (1986). Functional properties of phosphorylated yeast protein: Solubility, water holding capacity, and viscosity, J. Agric. Food Chem., 34: 670.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zayas, J.F. (1997). Solubility of Proteins. In: Functionality of Proteins in Food. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59116-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59116-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63856-5

  • Online ISBN: 978-3-642-59116-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics