Skip to main content

Ubiquitin and the Stress Response

  • Chapter
Stress Proteins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 136))

Abstract

Cells respond to stresses such as elevated temperature, heavy metals, and amino acid analogs by inducing the transcription of a set of genes whose products, known as stress proteins, enhance survival under stress conditions. The major shared property of conditions and agents which induce the stress response is the ability to damage cellular proteins. Protein damage is a key event in the induction of the stress response, as indicated by the finding that forced production of denatured proteins triggers the synthesis of heat shock proteins at sub-heat shock temperatures (Goff and Goldberg 1985; Ananthan et al. 1986). Moreover, reducing intracellular levels of damaged proteins is a principal objective of the stress response, because protein damage can be highly toxic: the denaturation of a protein not only causes the loss of function of that specific molecule, but may also, through the improper exposure of hydrophobic amino acid side chains, lead to the aggregation of other proteins. Levels of damaged proteins can be reduced in two ways (Parsell and Lindquist 1993; Sherman and Goldberg 1996; Gottesman et al. 1997). On the one hand, specific molecular chaperones can prevent the aggregation of damaged proteins, and catalyze their refolding. On the other hand, specific proteases can degrade damaged proteins. These two strategies for coping with stress-denatured proteins, namely salvage and elimination, may not be fully independent. Nor are the essential functions of chaperones and proteases restricted to stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amerik AY, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubpl4 modulates rates of protein degradation by the proteasome. EMBO J 16:4826–4838

    Article  PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  PubMed  CAS  Google Scholar 

  • Arendt CS, Hochstrasser MH (1997) Identification of the yeast 20 S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA 94:7156–7161

    Article  PubMed  CAS  Google Scholar 

  • Arnason T, Ellison MJ (1994) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14:7876–7883

    PubMed  CAS  Google Scholar 

  • Baker RT, Smith SA, Marano R, McKee J, Board PG (1994) Protein expression using cotranslational fusion and cleavage of ubiquitin. J Biol Chem 269:25381–25386

    PubMed  CAS  Google Scholar 

  • Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C., Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin proteasome pathway. EMBO J 15:2069–2076

    PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C., Sommer T (1997) Role of Cuelp in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Cwiria SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething M-J (1993) Affinity panning of a library of peptides displayed on bacte riophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5:949–956

    PubMed  CAS  Google Scholar 

  • Bond U, Agell N, Haas AL, Redman K, Schlesinger MJ (1988) Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem 263:2384–2388

    PubMed  CAS  Google Scholar 

  • Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092

    Article  PubMed  CAS  Google Scholar 

  • Carlson N, Rogers S, Rechsteiner M (1987) Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat shock. J Cell Biol 104:547–555

    Article  PubMed  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74:357–369

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Watt R, Piper PW (1994) Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet 243:358–362

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20 S and 26 S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C., Colleaux L, Kloetzel PM, Tanaka K, Mayer RJ (1995) Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J Biol Chem 270:1850–1858

    Article  PubMed  CAS  Google Scholar 

  • Dick LR, Moomaw CR, DeMartino GN, Slaughter CA (1991) Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry 30:2725–2734

    Article  PubMed  CAS  Google Scholar 

  • Dworkin-Rastl E, Shrutkowski A, Dworkin MB (1984) Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence. Cell 39:321–325

    Article  PubMed  CAS  Google Scholar 

  • Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H, Suzuki K (1991) Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol Cell Biol 11:344–353

    PubMed  CAS  Google Scholar 

  • Feldman RMR, Correll CC., Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Siclp. Cell 91:221–230

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  PubMed  Google Scholar 

  • Finley D, Özkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, Crooke ST, Chau V (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination deficient yeast mutant. Mol Cell Biol 14:5501–5509

    PubMed  CAS  Google Scholar 

  • Fisher EA, Zhou M, Mitchell DM, Wu X, Omura S, Wang H, Goldberg AL, Ginsberg HN (1997) The degradtaion of apolipoprotein B100 is mediated by the ubiquitin proteasome pathway and involves heat shock protein 70. J Biol Chem 272:20427–20434

    Article  PubMed  CAS  Google Scholar 

  • Galan J-M, Haguenauer-Tsapis R (1997) Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854

    Article  PubMed  CAS  Google Scholar 

  • Gerlinger U-M, Gückel R, Hoffmann M, Wolf DH, Hilt W (1997) Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol Biol Cell 8:2499–2847

    Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat shock genes. Cell 41:587–595

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaper ones and proteases. Genes Dev 11:815–823

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20 S proteasome from yeast at 2.4 Å resolution. Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  • Gropper R, Brandt RA, Elias S, Bearer CF, Mayer A, Schwartz AL, Ciechanover A (1991) The ubiquitin-activating enzyme, El, is required for stress-induced lysosomal degradation of cellular proteins. J Biol Chem 266:3602–3610

    PubMed  CAS  Google Scholar 

  • Haas AL, Bright PM (1985) The immunochemical detection and quantitation of intra cellular ubiquitin-protein conjugates. J Biol Chem 260:12464–12473

    PubMed  CAS  Google Scholar 

  • Haas AL (1988) Immunochemical probes of ubiquitin pool dynamics. In: Rechsteiner M (ed) Ubiquitin. Plenum, New York, pp 173–206

    Google Scholar 

  • Hayes SA, Dice JF (1996) Roles of molecular chaperones in protein degradation. J Cell Biol 132:255–258

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C., Wolf DH (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:555–562

    PubMed  CAS  Google Scholar 

  • Heinemeyer W, Gruhler A, Möhrle V, Mahé Y, Wolf DH (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene,codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268:5115–5120

    PubMed  CAS  Google Scholar 

  • Hershko A, Eytan E, Ciechanover A, Haas AL (1982) Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: relationship to the break down of abnormal proteins. J Biol Chem 257:13964–13970

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J 11:1215–1226

    PubMed  CAS  Google Scholar 

  • Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728

    Article  PubMed  CAS  Google Scholar 

  • Hilt W, Enenkel C., Gruhler A, Singer T, Wolf DH (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. J Biol Chem 268:3479–3486

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES, Bartel B, Seufert W, Varshavsky A (1992) Ubiquitin as a degradation signal. EMBO J 11:497–505

    PubMed  CAS  Google Scholar 

  • Jones MEE, Haire MF, Kloetzel P-M, Mykles DL, Schwartz LM (1995) Changes in the structure and function of the multicatalytic proteinase (MCP) during programmed cell death in the intersegmental muscles of the hawkmoth, Manduca sexta. Dev Biol 169:436–447

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J, Reins H-A, Schobert C., Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  PubMed  CAS  Google Scholar 

  • King RW, Deshaies RF, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Koptio RR (1997) ER quality control: the cytoplasmic connection. Cell 88:427–430

    Article  Google Scholar 

  • Kulka RG, Raboy B, Schuster R, Parag HA, Diamond G, Ciechanover A, Marcus M (1988) A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, El. J Biol Chem 263:15726–15731

    PubMed  CAS  Google Scholar 

  • Lee DH, Sherman MY, Goldberg AL (1996) Involvement of molecular chaperone Ydjl in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol Cell Biol 16:4773–4781

    PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae, Mol Cell Biol 18:30–38

    PubMed  CAS  Google Scholar 

  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20 S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539

    Article  PubMed  Google Scholar 

  • Mifflin LC., Cohen RE (1994a) Characterization of denatured protein inducers of the heat shock (stress) response in Xenopus laevis oocytes. J Biol Chem 269:15710–15717

    PubMed  CAS  Google Scholar 

  • Mifflin LC., Cohen RE (1994b) hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers. J Biol Chem 269:15718–15723

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Kroeger PE, Cotto JJ (1996) The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. EXS 77:139–163

    PubMed  CAS  Google Scholar 

  • Müller-Taubenberger A, Hagmann J, Noegel A, Gerisch G (1988) Ubiquitin gene expression in Dictyostelium is induced by heat and cold shock, cadmium, and inhibitors of protein synthesis. J Cell Sci 90:51–58

    PubMed  Google Scholar 

  • Munro S, Pelham HRB (1984) Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp70. EMBO J 2:3087–3093

    Google Scholar 

  • Ohba M (1994) A 70-kDa heat shock cognate protein suppresses the defects caused by a proteasome mutation in Saccharomyces cerevisiae. FEBS Lett 251:263–266

    Google Scholar 

  • Özkaynak E, Finley D, Varshavsky A (1984) The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor. Nature 312:663–666

    Article  PubMed  Google Scholar 

  • Özkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  Google Scholar 

  • Parag HA, Raboy B, Kulka, RG (1987) Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J 6:55–61

    PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (1997) Targeting of substrates to the 26 S proteasome. FASEB J 11:1055–1066

    PubMed  CAS  Google Scholar 

  • Redman KL, Rechsteiner M (1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338:438–440

    Article  PubMed  CAS  Google Scholar 

  • Rubin DM, Finley D (1995) The proteasome: a protein-degrading organelle?. Curr Biol 5:854–858

    Article  PubMed  CAS  Google Scholar 

  • Sadis S, Atenza C., Finley D (1995) Synthetic signals for ubiquitin-dependent proteoly-sis. Mol Cell Biol 15:4086–4094

    PubMed  CAS  Google Scholar 

  • Schneider C., Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci USA 93:14536–14541

    Article  PubMed  CAS  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9:543–550

    PubMed  CAS  Google Scholar 

  • Shang F, Gong X, Taylor A (1997) Activity of ubiquitin-dependent pathway in response to oxidative stress: ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 272:23086–23093

    Article  PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (1996) Involvement of molecular chaperones in intracellular protein breakdown. EXS 77:57–78

    PubMed  CAS  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    Article  PubMed  CAS  Google Scholar 

  • Sommer T, Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11:1227–1233

    PubMed  CAS  Google Scholar 

  • Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    PubMed  CAS  Google Scholar 

  • Treger JM, Heichman KA, McEntee K (1988) Expression of the yeast UBI4 gene increases in response to DNA-damaging agents and in meiosis. Mol Cell Biol 8:1132–1136

    PubMed  CAS  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787–798

    Article  PubMed  CAS  Google Scholar 

  • Wagner I, Arlt H, van Dyck L, Langer T, Neupert W (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 13:5135–5145

    PubMed  CAS  Google Scholar 

  • Werner EL, Brodsky JL, McCracken A A (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 93:13797–13801

    Article  PubMed  CAS  Google Scholar 

  • Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates the MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    Article  PubMed  CAS  Google Scholar 

  • Yaglom JA, Goldberg AL, Finley D, Sherman MY (1996) The molecular chaperone Ydjl is required for the p34 CDC23-dependent phosphorylation of the cyclin Cln3 that signals its degradation. Mol Cell Biol 16:3679–3684

    PubMed  CAS  Google Scholar 

  • Zhou M, Wu X, Ginsberg, HN (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells, J Biol Chem 40:24769–24775

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pickart, C.M. (1999). Ubiquitin and the Stress Response. In: Latchman, D.S. (eds) Stress Proteins. Handbook of Experimental Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58259-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58259-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63519-9

  • Online ISBN: 978-3-642-58259-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics