Skip to main content

The Second-order in Time Continuous Newton Method

  • Conference paper
Approximation, Optimization and Mathematical Economics

Abstract

Let H be a real Hilbert space and Ф : H ↦ ℝ a twice continuously differentiable function, whose Hessian is Lipschitz continuous on bounded sets. We study the Newton-like second-order in time nonlinear dissipative dynamical system:\(\ddot x\left( t \right) + {\nabla ^2}\Phi \left( {x\left( t \right)} \right)\dot x\left( t \right) + \nabla \Phi \left( {x\left( t \right)} \right) = 0 \), plus Cauchy data, mainly in view of the unconstrained minimization of the function Ф.The main result is the gradient vanishing along any bounded trajectory as time goes to infinity. Results concerning the convergence of every bounded solution to a critical point are given in peculiar situations: when Ф is convex (with only one minimum) or is a Morse function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space, preprint 98–05, Dépaгtement de Methémetiques, Université Montpellier II, to appear in SIAM J. of Control and Optimization.

    Google Scholar 

  2. F. Alvarez, J.M. Perez, Asymptotic analysis of evolution equations associated with Newton’s method for parametric approximations of convex minimization problems, Appl. Math. Optim. 38 (1998), 193–217.

    Article  Google Scholar 

  3. H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations, 128 (2), (1996), 519–540.

    Article  Google Scholar 

  4. H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method: I the continuous dynamical system, preprint 1998/11, Département de Mathématiques, Université de Montpellier II; to appear in Communications in Contemporary Mathematics.

    Google Scholar 

  5. J.-P. Aubin, A. Cellina, Differential Inclusions, Springer, 1984.

    Book  Google Scholar 

  6. J.-B. Baillon, Un exemple concernant le comportement asymptotique de la solution du prod èmedu/dt + дф(u) =0, Journal of Functional Analysis 28, 369–376 (1978).

    Article  Google Scholar 

  7. J. F. Bonnans, J.-Ch. Gilbert, C. Lemaréchal, C. Sagastizábal, Méthodes Numériques d’optimisation, Springer, 1998.

    Google Scholar 

  8. H. Brézis, Opérateurs maximaux monotones, Mathematics Studies 5, NorthHolland-American Elsevier, 1973.

    Google Scholar 

  9. R.E. Bruck, Asymptotic convergence of nonlinear contraction seniigroups in Hilbert space, Journal of Functional Analysis, 18, (1975), 15–26.

    Article  Google Scholar 

  10. A. Haraux, Systèmes dynamiques dissipatifs et applications, RMA 17, Masson, Paris, (1991).

    Google Scholar 

  11. H. Th. Jongen, A. Ruiz Jhones, Nonlinear optimization: on the min-max digraph and global smoothing, Calculus of variations and differential equations (Haifa, 1998), 119–135, Chapman&Hall/CRC Res. Notes Math., Chapman & Hall/CRC, Boca Raton, FL, 2000.

    Google Scholar 

  12. S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Colloques internationaux du C.N.R.S, n°117. Les Equations aux dérivées partielles (1963).

    Google Scholar 

  13. S. Lojasiewicz, Ensembles semi-analytiques, notes I.Н.E.S. (1965).

    Google Scholar 

  14. J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer, 1982.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attouch, H., Redont, P. (2001). The Second-order in Time Continuous Newton Method. In: Lassonde, M. (eds) Approximation, Optimization and Mathematical Economics. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57592-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57592-1_2

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1363-0

  • Online ISBN: 978-3-642-57592-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics