Skip to main content

Constraints on Carbon Drawdown and Export in the Greenland Sea

  • Chapter
The Northern North Atlantic

Abstract

Data on the inorganic carbon system, the distribution of oxygen, nitrate, and phosphate, as well as particle sedimentation and plankton biomass collected from winter 1993 to summer 1996 in the central Greenland Sea show that although this area is a sink for atmospheric carbon throughout the year, relatively little of the carbon fixed by photosynthesis into organic compounds in the surface waters is eventually sequestered in deep waters. Rather, due to intensive biological remineralization of organic matter within the winter mixed layer, the bulk of carbon is retained in the upper few hundred meters of the water column. The sequestration of biogenic carbon is constrained by the depth of the winter mixed layer, in that deep winter mixing effectively increases the depth below which true export can occur. There is potential for increased export with increased rates of deep convection. Likewise, a reduction in heterotrophic recycling in near-surface waters may enhance the effectiveness of the biological pump. However, because of our still limited understanding of the interactions between the biological and solubility pumps in this region, the extent to which export may be enhanced is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aagaard, K., J. H. Swift, and E. C. Carmack, Thermohaline circulation in the Arctic Mediterranean Seas, J. Geophys. Res., 90, 4833–4846, 1985.

    Article  Google Scholar 

  • Anderson, L. G., M. Chierici, E. Fogelqvist, and T. Johannessen, Flux of anthropogenic and steady state carbon into the deep Greenland Sea, J. Geophys. Res., in press.

    Google Scholar 

  • Anderson, L. A., and J. L. Sarmiento, Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 65–80, 1994.

    Article  Google Scholar 

  • Bauerfeind, E., B. von Bodungen, K. Arndt, and W. Koeve, Particle flux and composition of sedimenting matter in the Greenland Sea, J. Mar. Sys., 5, 411–423, 1993.

    Article  Google Scholar 

  • Bodungen, B. von, A. Antia, E. Bauerfeind, O. Haupt, W. Koeve, E. Machado, I. Peeken, R. Peinert, S. Reitmeier, C. Thomsen, M. Voss, M. Wunsch, U. Zeller, and B. Zeitzschel, Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch., 84, 11–27, 1995.

    Article  Google Scholar 

  • Bonisch, G., J. Blindheim, J. L. Bullister, P. Schlosser, and D. W. R. Wallace, Long-term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea, J. Geophys. Res., 102, 18553–18571, 1997.

    Article  Google Scholar 

  • Brewer, P. G., T. Takahashi, and R. T. Williams, Transient tracers in the oceans (TTO)-Hydrographic data and carbon dioxide systems with revised carbon chemistry data. Carbon Dioxide Information Analysis Center, U.S. DOE Global Survey of CO2 in the Oceans, 1986.

    Google Scholar 

  • Broecker, W. S., and T.-H. Peng, Gas exchange rates between air and sea, Tellus, 26, 21–35, 1974.

    Article  Google Scholar 

  • Broecker, W. S., and T.-H. Peng, Interhemispheric transport of carbon dioxide by ocean circulation, Nature, 356, 587–589, 1992.

    Article  Google Scholar 

  • Broecker, W. S., and T.-H. Peng, Tracers in the sea, 690 pp., Eldigio Press, Palisades, New York, 1982.

    Google Scholar 

  • Budeus, G., W. Schneider, and G. Krause, Winter convective events and bottom water warming in the Greenland Sea, J. Geophys. Res., 103C, 18513–18527, 1998.

    Article  Google Scholar 

  • Børsheim, K. Y., and S. M. Myklestad, Dynamics of DOC in the Norwegian Sea inferred from monthly profiles collected during three years at 66° N, 2° E, Deep-Sea Res., 44, 593–601, 1997.

    Article  Google Scholar 

  • Bersheim, K. Y., Bacterial production rates and concentrations of organic carbon at the end of the growing season in the Greenland Sea, Aquat. Microb. Ecol., in press.

    Google Scholar 

  • Carlson, C. A., and H. W. Ducklow, Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: daily and fine-scale vertical variations, Deep-Sea Res. II, 42, 639–656, 1995.

    Article  Google Scholar 

  • Carlson, C. A., H. W. Ducklow, and A. F. Michaels, Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea, Nature, 371, 405–8, 1994.

    Article  Google Scholar 

  • Carmack, E., and K. Aagaard, On the deep water of the Greenland Sea, Deep-Sea Res., 20, 687–715, 1973.

    Google Scholar 

  • Chen, C.-T.A., E. P. Jones, and K. Lin, Wintertime total carbon dioxide measurements in the Norwegian and Greenland Seas, Deep-Sea Res., 37, 1455–1473, 1990.

    Article  Google Scholar 

  • Chierici, M., H. Drange, L.G. Anderson, and T. Johannessen, Inorganic carbon fluxes trough the boundaries of the Greenland Sea Basin based on in situ observations and water transport estimates, J. Mar. Syst., 22, 295–309, 1999.

    Article  Google Scholar 

  • Dam, H. G., M. R. Roman, and M. J. Youngbluth, Downward export of respiratory carbon and dissolved inorganic nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station, Deep-Sea Res. I, 42, 1187–1197, 1995.

    Article  Google Scholar 

  • Denman, K. L., and A. E. Gargett, Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean, Limnol. Oceanogr., 28, 801–815, 1983.

    Article  Google Scholar 

  • Dickson, R., J. Lazier, J. Meinke, P. Rhines, and J. Swift, Long-term coordinated changes in the convective activity of the North Atlantic, Progr. Oceanogr., 38, 241–295, 1996.

    Article  Google Scholar 

  • DOE, Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, ver. 2., edited by A. G. Dickson, and C. Goyet, 1994.

    Google Scholar 

  • Dugdale, R. C; and J. J. Goering, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206, 1967.

    Article  Google Scholar 

  • Eide, L. I., M. Reistad, and J. Guddal, Database av beregnede vind og bølgeparametre for Nordsjøen, Norskehavet og Barentshavet, hver 6. time for oarene 1955-81 [Database of wind and wave parameters for the North, Norwegian and Barents Seas, every 6th hour from 1955-81], Prosjekt Hindcast-database, Norwegian Meteorological Institute, Oslo, Norway, 1–38, 1985.

    Google Scholar 

  • Falck, E. and H.G. Gade, Net community production and oxygen fluxes in the Nordic Seas based on 02 budget calculations, Global Biogeochem. Cycles, 13, 1117–1126, 1999.

    Article  Google Scholar 

  • Hirche, H.-J., The life cycle of Calanus hyperboreus in the Greenland Sea., Mar. Biol., 128, 607–618, 1997.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley, and S. Jasper, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, 1225–1228, 1977.

    Google Scholar 

  • Honjo, S., Particle fluxes and modem sedimentation in the polar oceans, in Polar Oceanography, edited by W. O. Smith, pp. 687–739, Academic Press, San Diego, 1990.

    Google Scholar 

  • Honjo, S., Fluxes of particles to the interior of the open oceans, in Particle Flux in the Ocean, edited by V. Ittekkot, P. Schäfer, S. Honjo, and P. J. Depetris, pp. 91–154, John Wiley and Sons, Chichester, 1996.

    Google Scholar 

  • Jeffrey, S. W., and G. E Humphrey, New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzenkunde, 167, 191–194, 1975.

    Google Scholar 

  • Jeffrey, S. W, and N. A. Welschmeyer, Spectrophotometric and fluorometric equations in common use in oceanography, in Phytoplankton Pigments in Oceanography: Guideline s to Modern Methods, edited by S.W. Jeffrey, R. F. C. Mantoura, and S.W. Wright, pp. 597–615, UNESCO Pub., 1997.

    Google Scholar 

  • Johannessen, o. M., S. Sandven, and J.A. Johannessen, Eddy-related winter convection in the Boreas Basin, in Deep Convection and Deep Water Formation in the Oceans, edited by P. C. Chu, and J. C. Gascard, pp. 87–105, Elsevier, Amsterdam, 1991.

    Chapter  Google Scholar 

  • Kähler, P., P.K. Bjornsen, K. Lochte, and A. Antia, Dissolved organic matter and its utilization by bacteria during spring in the Southern Ocean, Deep-Sea Res. II, 44, 341–353, 1997.

    Article  Google Scholar 

  • Knox, E, and M. B. McElroy, Changes in atmospheric CO2: influence of the marine biota at high latitude, J. Geophys. Res., 89D, 4629–4637, 1984.

    Article  Google Scholar 

  • Lee, C.; and S. G. Wakeham, Organic matter in seawater: Biogeochemical processes, in Chemical Oceanography, Vol. 9, edited by J. P. Riley, pp. 1–51, Academic Press, London, 1988.

    Google Scholar 

  • Liss, P. S., and L. Merlivat, Air-sea gas exchange rates: introduction and synthesis, in The Role of Air-Sea Exchange in Geochemical Cycling, edited by P. Buat-Ménard, pp. 113–127, D. Reidel Publ., 1986.

    Google Scholar 

  • Longhurst, A. R., and W. G. Harrison, The biological pump: profiles of plankton production and consumption in the upper ocean, Progr. Oceanogr., 22, 47–123, 1989.

    Article  Google Scholar 

  • Michaels, A. E., N. R. Bates, K. O. Buesseler, C. A. Carlson, and A. H. Knap, Carbon-cycle imbalances in the Sargasso Sea, Nature, 372, 537–540, 1994.

    Article  Google Scholar 

  • Miller, L.A., M. Chierici, T. Johannessen, T.T. Noji, E. Rey, and I. Skjelvan, Seasonal dissolved inorganic carbon distributions in the Greenland Sea and implications for atmospheric CO2 exchange, Deep-Sea Res., 46, 1473–1496, 1999.

    Article  Google Scholar 

  • Milliman, J. D., Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927–957, 1993.

    Article  Google Scholar 

  • Noji, T. T., The influence of macrozooplankton on vertical particulate flux, Sarsia, 76, 1–9, 1991.

    Google Scholar 

  • Noji T. T., K.Y. Børsheim, E. Rey, and R. Nortvedt, Dissolved organic carbon associated with sinking particle s can be crucial for estimates of vertical carbon flux, Sarsia, 84, 129–135, 1999b.

    Google Scholar 

  • Noji, T. T., E. Rey, L. A. Miller, K. Y. Børsheim, and J. Urban-Rich, Fate of biogenic carbon in the upper 200 m of the central Greenland Sea, Deep-Sea. Res. II, 46, 1497–1509, 1999a.

    Article  Google Scholar 

  • Peinert, R., U. V. Bathmann, B. von Bodungen, and T. T. Noji, The impact of grazing on spring phytoplankton growth and sedimentation in the Norwegian Current, SCOPEIUNEP, 62, 149–164, 1987.

    Google Scholar 

  • Ramseier, R. O., E. Bauerfeind, C. Garrity, and I. D. Walsh, Seasonal variability of sediment trap collections in the Northeast Water Polynya. 1. Sea-ice parameters and particle flux, J. Mar. Sys., 10, 359–369, 1997.

    Article  Google Scholar 

  • Redfield, A. C., B. H. Ketchum, and E. A. Richards, The influence of organisms on the composition of seawater, in The Sea, edited by M. N. Hill, pp. 26–77, John Wiley, New York, 1963.

    Google Scholar 

  • Sarmiento, J. L., and J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric Pco2 Nature, 308, 621–624, 1984.

    Article  Google Scholar 

  • Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe, Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245–249, 1998.

    Article  Google Scholar 

  • Schlosser, P., G. Bonisch, M. Rhein, and R. Bayer, Reduction of deep-water formation in the Greenland Sea during the 1980s: Evidence from tracer data, Science, 251, 1054–1056, 1991.

    Article  Google Scholar 

  • Siegenthaler, U., and T. Wenk, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624–626, 1984.

    Article  Google Scholar 

  • Silver, M. W., and M. M. Gowing, The “particlrd flux: origins and biological components, Progr. Oceanogr., 26, 75–113, 1991.

    Article  Google Scholar 

  • Skjelvan, I., T. Johannessen, and L. A. Miller, Interannual variability of JCO2 in the Greenland and Norwegian Seas, Tellus, 5lB, 477–489, 1999.

    Google Scholar 

  • Smith, W.O., L. A. Codispoti, D. M. Nelson, T. Manley, E. J. Buskey, H. J. Niebauer, and G. E. Cota, Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle, Nature, 352, 514–516, 1991.

    Article  Google Scholar 

  • Stigebrandt, A., Computations of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas, Limnoi. Oceanogr., 36, 444–454, 1991.

    Article  Google Scholar 

  • Takahashi, T., W.S. Broecker, and S. Langer, Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 90, 6907–6924, 1985.

    Article  Google Scholar 

  • Toudal, L., Ice extent in the Greenland Sea 1978-1995, Deep-Sea Res. II, 46, 1237–1254, 1999.

    Article  Google Scholar 

  • U.S. GOFS, Sediment trap technology and sampling, U.S. GOFS Planning Report, 10, 94 pp., 1989.

    Google Scholar 

  • Urban-Rich, J., Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea, J. Exp. Mar. Bioi. Ecol., 232, 107–124, 1999.

    Article  Google Scholar 

  • Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.

    Article  Google Scholar 

  • Weiss, R. E., The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res., 17, 721–735, 1970.

    Google Scholar 

  • WOCE, WOCE Operations Manual, Vol. 3, Section 3.1, Part 3.1.2. Revision 2, WHP Office Report, 90-1, WOCEReport67191, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noji, T.T. et al. (2001). Constraints on Carbon Drawdown and Export in the Greenland Sea. In: Schäfer, P., Ritzrau, W., Schlüter, M., Thiede, J. (eds) The Northern North Atlantic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56876-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56876-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63136-8

  • Online ISBN: 978-3-642-56876-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics