Skip to main content

The Organization of Global Motion and Transparency

  • Chapter
Motion Vision

Abstract

The visual system has the task of computing global motions associated with objects and surfaces. This task strongly involves extrastriate brain areas, particularly V5/MT. Motion transparency provides a particular challenge for understanding how global motions are computed and represented in the brain. Psycho-physical experiments show that, for a single region, multiple motions can be quantitatively represented. However, at the most local scale, motion signals have a suppressive interaction so that only a single motion can be represented. Neurophysiological experiments show that this suppression is a property of MT, not of V1, reflecting a subunit structure within MT receptive fields and showing that transparency perception is related to MT rather than V1 activity. A full understanding of transparency perception and other global motion phenomena will require us to understand how perceived motions are related to the distribution of activity across a population of directionally selective neurones, and how the brain implements the representation of motions assigned to extended objects rather than to specific retinotopic locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2: 284–299

    Article  PubMed  CAS  Google Scholar 

  • Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA (1997) Neural mechanisms of visual motion perception in primates. Neuron 18: 865–872

    Article  PubMed  CAS  Google Scholar 

  • Baker CL, Hess RF, Zihl J (1991) Residual motion perception in a ‘motion-blind’ patient, assessed with limited-lifetime random dot stimuli. J Neurosci, 11: 454–481

    PubMed  Google Scholar 

  • Barlow HB, Levick WR, (1965) The mechanism of directionally selective units in the rabbit’s retina. J Physiol 178: 477–504

    PubMed  CAS  Google Scholar 

  • Braddick O (1993) Segmentation versus integration in visual motion processing. Trends in Neurosci 16: 263–268

    Article  CAS  Google Scholar 

  • Braddick 0 (1997) Local and global representations of velocity: transparency, opponency, and global direction perception. Perception 26: 995–1010

    Article  PubMed  CAS  Google Scholar 

  • Braddick OJ, Hartley T, O’Brien J, Atkinson J, Wattam-Bell J, Turner R (1998) Brain areas differentially activated by coherent visual motion and dynamic noise. Neurolmage 7: S322

    Google Scholar 

  • Bradley DC, Qian N, Andersen RA (1995) Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373: 609–611

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12: 4745–4765

    PubMed  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of neurons in macaque MT to stochastic motion signals. Visual Neurosci 10: 1157–1169

    Article  CAS  Google Scholar 

  • Curran W, Braddick OJ (1999) Perceived motion direction and speed of locally balanced stimuli. Perception 28 (suppl): 49

    Google Scholar 

  • Curran W, Braddick OJ (2000) Speed and direction of locally-paired dot patterns. Vision Res: in press

    Google Scholar 

  • Downing CJ, Movshon AJ (1989) Spatial and temporal summation in the detection of motion in stochastic random dot displays. Invest Ophthalmol Vis Sci (Suppl) 30: 72

    Google Scholar 

  • Emerson RC, Bergen JR, Adelson EH (1992) Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res 32: 203–218

    Article  PubMed  CAS  Google Scholar 

  • Ferrera VP, Wilson HR (1990) Perceived direction of moving two-dimensional patterns. Vision Res 30: 273–287

    Article  PubMed  CAS  Google Scholar 

  • Ferrera VP, Wilson HR (1991) Perceived speed of moving two-dimensional patterns. Vision Research 31: 877–894

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general approach. Human Brain Mapp 2: 189–210

    Article  Google Scholar 

  • Grzywacz NM, Yuille NL (1990) A model for the estimate of local image velocity by cells in the visual cortex. Proc R Soc Lond A 239: 129–161

    Article  CAS  Google Scholar 

  • Heeger DJ (1987) Model for the extraction of image flow. J Opt Soc Am A 4: 1455–1471

    Article  PubMed  CAS  Google Scholar 

  • Hildreth EC (1984) Computations underlying the measurement of visual motion. Art Intell 23: 309–355

    Article  Google Scholar 

  • Horn BKP, Schunck B (1981) Determining optical flow. Art Intell 17: 185–203

    Article  Google Scholar 

  • Lankheet MJM, Verstraten FJ (1995) Attentional modulation of adaptation to two-component transparent motion. Vision Res 35: 1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Proc 7‘s Internat Joint Conf Art Intell, Vancouver: 674–679

    Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986a) Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55: 1308–1327

    CAS  Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986b) Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V I. J Neurophysiol 55: 1328–1339

    Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1986) The analysis of moving visual patterns. In: Chagas C, Gattass R, Gross C (eds) Experimental Brain Research Supplementum II: Pattern recognition mechanisms. Springer, New York, pp 117–151

    Google Scholar 

  • Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341: 52–54

    Article  PubMed  CAS  Google Scholar 

  • Newsome WT, Paré EB (1988) A selective impairment of motion processing following lesions of the middle temporal area (MT). J Neurosci 8: 2201–2211

    PubMed  CAS  Google Scholar 

  • Nowlan SJ, Sejnowski TJ (1995) A selection model for motion processing in area MT of primates. J Neurosci 15: 1195–1214

    PubMed  CAS  Google Scholar 

  • Poggio T, Torre V, Koch C (1988) Computational vision and regularization theory. Nature 317: 314–319

    Article  Google Scholar 

  • Qian N, Andersen RA (1994) Transparent motion perception as detection of unbalanced motion signals II: Physiology. J Neurosci 14: 7367–7380

    PubMed  CAS  Google Scholar 

  • Qian N, Andersen RA (1995) V1 responses to transparent and non-transparent motions. Exp Brain Res 103: 41–50

    Google Scholar 

  • Qian N, Andersen RA, Adelson EH (1994a) Transparent motion perception as detection of unbalanced motion signals I: Psychophysics. J Neurosci 14: 7357–7366

    CAS  Google Scholar 

  • Qian N, Andersen RA, Adelson EH (1994b) Transparent motion perception as detection of unbalanced motion signals III: Modeling. J Neurosci 14: 7381–7392

    CAS  Google Scholar 

  • Recanzone GH, Wurtz RH, Schwarz UC (1997) Responses of MT and MST neurons to one and two moving objects in the receptive field. J Neurophysiol 78: 2904–2915

    PubMed  CAS  Google Scholar 

  • Rodman HR, Albright TD (1987) Coding of visual stimulus velocity in area MT of the macaque. Vision Res 27: 2035–2048

    Article  PubMed  CAS  Google Scholar 

  • Rodman HR, Albright TD (1989) Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Exp Brain Res 75: 53–64

    Article  PubMed  CAS  Google Scholar 

  • Rubin N, Hochstein S (1993) Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects. Vision Res 33: 1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 16: 2579–2586

    Article  Google Scholar 

  • Shadlen MN, Newsome WT, Zohary E, Britten KH (1993) Integration of local motion signals in area MT. Soc Neurosci Abstract 19: 1282

    Google Scholar 

  • Simoncelli EP (1993) Distributed analysis and representation of visual motion. Ph.D. Thesis, MIT, Cambridge

    Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38: 743–761

    Article  PubMed  CAS  Google Scholar 

  • Smith AT, Curran W, Braddick OJ (1999) What motion distributions yield global transparency and spatial segmentation? Vision Res 39: 1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Snowden RJ (1989) Motions in orthogonal directions are mutually suppressive. J Opt Soc Am A 7: 1096–1101

    Article  Google Scholar 

  • Snowden RJ, Treue S, Erickson RE, Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768–2785

    PubMed  CAS  Google Scholar 

  • Stoner GR, Albright TD (1992) Neural correlates of perceptual motion coherence. Nature 358: 412–414

    Article  PubMed  CAS  Google Scholar 

  • Stoner GR, Albright TD (1996) The interpretation of visual motion: Evidence for surface segmentation mechanisms. Vision Res 36: 1291–1310

    Article  PubMed  CAS  Google Scholar 

  • Stoner GR, Albright TD, Ramachandran S (1990) Transparency and coherence in human motion perception. Nature 344: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Tootell RBH, Mendota JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17: 7060–7078

    PubMed  CAS  Google Scholar 

  • Treue S, Maunsell JHR (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Treue S, Hol K, Rauber Hi (2000) Seeing multiple directions of motion — physiology and psychophysics. Nature Neurosci 3: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Triesman, A (1988) Features and objects. Quart J Exp Psychol A 40: 201–237

    Article  Google Scholar 

  • Verstraten FA, Fredericksen RE, van Wesel RJ, Boulton JC, van de Grind WA (1996) Directional motion sensitivity under transparent motion conditions. Vision Res 36: 2333–2336

    Article  PubMed  CAS  Google Scholar 

  • Watamaniuk SNJ, Sekuler R, Williams DW (1989) Direction perception in complex dynamic displays - the integration of direction information. Vision Res 29: 47–59

    Article  PubMed  CAS  Google Scholar 

  • Watson AB, Ahumada AJ (1985) Model of human visual-motion sensing. J Opt Soc Am A 2: 322–342

    Article  PubMed  CAS  Google Scholar 

  • Watt RJ, Andrews DP (1981) APE: Adaptive probit estimation of psychometric functions. Curr Psychol Rev 1: 205–214

    Article  Google Scholar 

  • Williams DW, Sekuler R (1984) Coherent global motion percepts from stochastic local motions. Vision Res 24: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Kim J (1994) A model for motion coherence and transparency. Visual Neurosci 11: 1205–1220

    Article  CAS  Google Scholar 

  • Wishart KA, Braddick O (1997a) Performance-based measures of motion transparency. Invest Opthalmol Vis Sci 38: S75

    Google Scholar 

  • Wishart KA, Braddick OJ (1997b) Performance based measures of transparency in locally-balanced motions. Perception 26 (Suppl): 86

    Google Scholar 

  • Wuerger S, Shapley R, Rubin N (1996) “On the visually perceived direction of motion” by Hans Wallach: 60 years later. Perception. 25: 1317–1368

    Article  Google Scholar 

  • Zohary E, Scase MO, Braddick OJ (1996) Integration across directions in dynamic random-dot displays: vector summation or winner-take-all? Vision Res 16: 2321–2331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braddick, O., Qian, N. (2001). The Organization of Global Motion and Transparency. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics