Skip to main content

Convergence of the Upwind Interface Source Method for Hyperbolic Conservation Laws

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

Abstract

This paper deals with typical questions arising in the analysis of numerical approximations for scalar conservation laws with a source term. We focus our attention on semi-discrete finite volume schemes, in the general case of a nonuniform spatial mesh. To define appropriate discretizations of the source term, we introduce the formalism peculiar to the Upwind Interface Source method and we establish conditions on the numerical functions so that the discrete solver preserves the steady state solutions. Then we formulate a rigorous definition of consistency, adapted to the class of well-balanced schemes, for which we are able to prove a Lax-Wendroff type convergence theorem. Some examples of numerical methods are discussed, in order to validate the arguments we propose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bermudez A., Vasquez M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, 23 (1994), no. 8, 1049–1071

    Article  MathSciNet  MATH  Google Scholar 

  2. Botchorishvili R., Perthame B., Vasseur A., Equilibrium Schemes for Scalar Conservation Laws with Stiff Sources, Math. Comp., to appear

    Google Scholar 

  3. Bouchut F., Perthame B., Kružkov’s estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), no. 7, 2847–2870

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn B., Coquel F., LeFloch P., An error estimate for finite volume methods for multidimensional conservation laws, Math. of Comp., 63 (1994), 77–103

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn B., Coquel F., LeFloch P., Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal., 32 (1995), no. 3, 687–705

    Article  MathSciNet  MATH  Google Scholar 

  6. Eymard R., Gallouët T., Herbin R., Finite Volume Methods, Handbook of numerical analysis, vol. VIII, P.G. Ciarlet and J.L. Lions editors, Amsterdam, North-Holland, 2000

    Google Scholar 

  7. Eymard R., Gallouët T., Ghilani M., Herbin R., Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by some finite volume schemes, I.M.A. Journal of Numer. Anal., 18 (1998), 563–594

    MATH  Google Scholar 

  8. Callouët T., Hérard J.M., Seguin N., Some approximate Godunov schemes to compute shallow-water equations with topography, AIAA-2001 (2000)

    Google Scholar 

  9. Godlewski E., Raviart P.A., Hyperbolic systems of conservation laws, Mathérnatiques & Applications, n. 3/4, Paris, Ellipses, 1991

    Google Scholar 

  10. Godlewski E., Raviart P.A., Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences 118, New York, Springer-Verlag, 1996

    Google Scholar 

  11. Gosse L., LeRoux A.Y., A well-balanced scheme designed for inhomogeneous scalar conservation laws, C.R. Acad. Sci. Paris Sir. I Math., 323 (1996), no. 5, 543–546

    MathSciNet  MATH  Google Scholar 

  12. Gosse L., A priori error estimate for a well-balanced scheme designed for inhomogeneous scal ar conservation laws, C.R. Acad. Sci. Paris Sér. I Math., 327 (1998), no. 5, 467–472

    Article  MathSciNet  MATH  Google Scholar 

  13. Gosse L., A well-balanced flux-ve ctor splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39 (2000), no. 9-10, 135–159

    Article  MathSciNet  MATH  Google Scholar 

  14. Gosse L., A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11 (2001), no. 2, 339–365

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenberg J.M., LeRoux A.Y., A well balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Nusner. Anal., 33 (1996), 1–16

    Article  MathSciNet  MATH  Google Scholar 

  16. Greenberg J.M., LeRoux A.Y., Baraille R., Noussair A., Analysis and approximation of conservation laws with source term, SIAM J. Numer. Anal., 34 (1997), no. 5, 1980–2007

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin S., A steady-state capturing method for hyperbolic systems with geometrical source terms, M2AN Math. Model. Numer. Anal., 35 (2001), no. 4, 631–645

    Article  MathSciNet  MATH  Google Scholar 

  18. Karni S., personal communications

    Google Scholar 

  19. Katsaounis T., Makridakis C., Finite volume relaxation schemes for multidimensional conservation laws, Math. Comp., 70 (2001), n. 234, 533–553

    Article  MathSciNet  MATH  Google Scholar 

  20. Katsoulakis M.A., Kossioris G., Makridakis C., Convergence and error estimates of relaxation schemes for multidimensional conservation laws, Comm. Partial Differential Equations, 24 (1999), n. 3-4, 395–424

    Article  MathSciNet  MATH  Google Scholar 

  21. Kružkov S.N., First order quasilinear equations in several independent space variables, Math. USSR Sb., 10 (1970), 217–243

    Article  Google Scholar 

  22. Kurganov A., Central-upwind schemes for balance laws. Application to the Broadwell model, Proceedings of the Third International Symposium on Finite Volumes for Complex Applications (2002), to appear

    Google Scholar 

  23. Kurganov A., Levy D., Central-Upwind Schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal. (2001), to appear

    Google Scholar 

  24. Lax P.D., Shock waves and entropy, in Contributions to nonlinear functional analysis, E.H. Zarantonello editor, New York, Academic Press, 1971, 603–634

    Google Scholar 

  25. Lax P.D., Wendroff B., Systems of conservations laws, Comm. Pure Appl. Math., 13 (1960), 217–237

    Article  MathSciNet  MATH  Google Scholar 

  26. LeVêque R.J., Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zurich, Birkhauser, 1992

    Google Scholar 

  27. LeVêque R.J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), no. 1, 346–365

    Article  MathSciNet  MATH  Google Scholar 

  28. Perthame B., Simeoni C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), no. 4, 201–231

    Article  MathSciNet  MATH  Google Scholar 

  29. Roe P.L., Upwind differencing schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, C. Carasso, P.A. Raviart and D. Serre editors, Lecture Notes in Math., vol. 1270, Berlin, Springer-Verlag, 1987, pp. 41–51

    Chapter  Google Scholar 

  30. Sanders R., On Convergence of Monotone Finite Difference Schemes with Variable Spatial Differencing, Math. Comp., 40 (1983), 91–106

    Article  MathSciNet  MATH  Google Scholar 

  31. Vasseur A., Well-posedness of scalar conservation laws with singular sources, in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perthame, B., Simeoni, C. (2003). Convergence of the Upwind Interface Source Method for Hyperbolic Conservation Laws. In: Hou, T.Y., Tadmor, E. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55711-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62929-7

  • Online ISBN: 978-3-642-55711-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics