Skip to main content

Numerical Methods for Eigenvalue and Control Problems

  • Chapter
Frontiers in Numerical Analysis

Part of the book series: Universitext ((UTX))

Abstract

We briefly survey some of the classical methods for the numerical solution of eigenvalue problems, including methods for large scale problems. We also briefly discuss some of the basics of linear control theory, including stabilization and optimal control and show how they lead to several types of eigenvalue problems. We then discuss how these problems from control theory can be solved via classical and also nonclassical eigenvalue methods. The latter include recently developed structure preserving methods for the solution of Hamiltonian eigenvalue problems. We also demonstrate how structured eigenvalue methods can be developed for large scale and polynomial eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G.S. Ammar, P. Benner, and V. Mehrmann. A multishift algorithm for the numerical solution of algebraic Riccati equations. Electr. Trans. Num. Anal., 1:33–48, 1993.

    MathSciNet  MATH  Google Scholar 

  2. G.S. Ammar and V. Mehrmann. On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl., 149:55–72, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, second edition, 1995.

    Google Scholar 

  4. W.F. Arnold, III and A.J. Laub. Generalized eigenproblem algorithms and software for algebraic Riccatiequations. Proc, IEEE, 72:1746–1754, 1984.

    Article  Google Scholar 

  5. M. Athans and P.L. Falb. Optimal Control. McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  6. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the solution of algebraic eigenvalue problems. SIAM, Philadelphia, PA. USA, 2000.

    Book  MATH  Google Scholar 

  7. P. Benner, R. Byers, and E. Barth. HAMEV and SQRED: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices using Van Loan’s square reduced method. Technical Report SFB393/96-06, Fakultät für Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1996.

    Google Scholar 

  8. P. Benner, R. Byers, H. Fassbender, V. Mehrmann, and D. Watkins. Choleskylike factorizations of skew-symmetric matrices. Electr. Trans. Num. Anal., 11:85–93, 2000.

    MathSciNet  MATH  Google Scholar 

  9. P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical methods for linear quadratic and H∞ control problems. In G. Picci und D.S. Gillian, editor, Dynamical Systems, Control, Coding, Computer Vision. Progress in Systems and Control Theory, Vol. 25, pages 203–222, Basel, 1999. Birkhäuser Verlag.

    Google Scholar 

  10. P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation of deflating subspaces of skew Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl., 24:165–190, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Benner, A.J. Laub, and V. Mehrmann. Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Systems Magazine, 7(5):1828, 1997.

    Google Scholar 

  12. P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT — a subroutine library in systems and control theory. Applied and Computational Conirol, Signals, and Circuits, 1:499–532, 1999.

    Article  Google Scholar 

  13. P. Benner, V. Mehrmann, and H. Xu. A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math., 86:17–43, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math., 78(3):329–358, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithms and applications. In Proc, SPIE Conference, vol. 1770, pages 31–42, 1992.

    Google Scholar 

  16. J. R. Bunch. A note on the stable decomposition of skew-symmetric matrices. Math. Comp., 38:475–479, 1982.

    MathSciNet  MATH  Google Scholar 

  17. A. Bunse-Gerstner. Matrix factorization for symplectic QR-like methods. Linear Algebra Appl., 83:49–77, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for algebraic Riccati equations. In S. Bittanti, editor, Proc, Workshop on the Riccati Equation in Control, Systems, and Signals, pages 107–116, Corno, Italy, 1989.

    Google Scholar 

  19. R. Byers, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation. PhD thesis, Cornell University, Dept. Comp. Sci., Ithaca, NY, 1983.

    Google Scholar 

  20. R. Byers. A Hamiltonian QR-algorithm. SIAM J. Sci. Statist. Comput., 7:212–229, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Byers. Numerical stability and instability in matrix sign function based algorithms. In C.I. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods in Systems Theory, pages 185–200. Elsevier (North-Holland), New York, 1986.

    Google Scholar 

  22. E.A. Coddington and R. Carlson. Linear ordinary differential equations. SIAM, Philadelphia, PA, 1997.

    Book  MATH  Google Scholar 

  23. J.W. Demmel and B. Kågström. Computing stable eigendeeompositions of matrix pencils. Linear Algebra Appl., 88:139–186, 1987.

    Article  MathSciNet  Google Scholar 

  24. L. Elsner and C. He. An algorithm for computing the distance to uncontrollability. Sys. Control Lett., 17:453–464, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness and parametrization of lagrangian invariant subspaces. SIAM J. Matrix Anal. Appl., 23:1045–1069, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Gahinet, A. Laub, and A. Nemirovski. The LMI Control Toolbox. The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760, 1995.

    Google Scholar 

  27. F.R. Gantmacher. Theory of Matrices, volume 1. Chelsea, New York, 1959.

    MATH  Google Scholar 

  28. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, third edition, 1996.

    MATH  Google Scholar 

  29. J.J. Hench and A.J. Laub. Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control, 39:1197–1210, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. T.-M. Hwang, W.-W. Lin, and V. Mehrmann. Numerical solution of quadratic eigenvalue problems for damped gyroscopic systems. SIAM J. Sci. Statist. Comput., 2003. To appear.

    Google Scholar 

  31. T. Kailath. Systems Theory. Prentice-Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  32. H.W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie. Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  33. A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Conirol, AC-24:913–921, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  34. A.J. Laub. Invariant subspace methods for the numerical solution of Riccati equations. In S. Bittanti, A.J. Laub, and J.C. Willems, editors, The Riccati Equation, pages 163–196. Springer-Verlag, Berlin, 1991.

    Chapter  Google Scholar 

  35. R.B. Lehouq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide. SIAM, Philadelphia, PA, USA, 1998.

    Book  Google Scholar 

  36. W.-W. Lin, V. Mehrmann, and H. Xu. Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl., 301–303:469–533, 1999.

    Article  MathSciNet  Google Scholar 

  37. The Math Works, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass, 01760. The MATLAB Control Toolbox, Version 3.0b, 1993.

    Google Scholar 

  38. The Math Works, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass, 01760. The MATLAB Robust Control Toolbox, Version 2.0b, 1994.

    Google Scholar 

  39. MATLAB, Version 5. The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760-1500, USA, 1996.

    Google Scholar 

  40. V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.

    Book  MATH  Google Scholar 

  41. V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltoninan/Hamiltonian pencils. SIAM J. Sci. Comput., 22:1905–1925, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Mehrmann and D. Watkins. Polyn omial eigenvalue problems with Hamiltonian structure. Electr. Trans. Num. Anal., 2002. To appear.

    Google Scholar 

  43. V. Mehrmann and H. Xu. Numerical methods in control. J. Comput. Appl. Math., 123:371–394, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  44. C.C. Paige and C.F. Van Loan. A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl., 14:11–32, 1981.

    Article  Google Scholar 

  45. B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  46. P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods for Linear Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

    MATH  Google Scholar 

  47. L.S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishenko. The Mathematical Theory of Optimal Processes. Interscience, New York, 1962.

    MATH  Google Scholar 

  48. A.C.M. Ran and L. Rodman. Stability of invariant Lagrangian subspaces i. Operator Theory: Advances and Applications (I. Gohberg ed.), 32:181–218, 1988.

    MathSciNet  Google Scholar 

  49. Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press, Manchester, M13 9PL, UK, 1992.

    MATH  Google Scholar 

  50. W. Schiehlen. Multibody Systems Handbook. Springer-Verlag, 1990.

    Google Scholar 

  51. V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

    Google Scholar 

  52. D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  53. G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New York, 1990.

    MATH  Google Scholar 

  54. F. Tisseur. Backward error analysis of polynomial eigenvalue problems. Linear Algebra Appl., 309:339–361, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  55. F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43:234–286, 2001.

    Article  MathSciNet  Google Scholar 

  56. P. Van Dooren. The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl., 27:103–121, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Statist. Comput., 2:121–135, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  58. C.F. Van Loan. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl., 61:233–251, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  59. J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

    MATH  Google Scholar 

  60. K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehrmann, V. (2003). Numerical Methods for Eigenvalue and Control Problems. In: Blowey, J.F., Craig, A.W., Shardlow, T. (eds) Frontiers in Numerical Analysis. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55692-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55692-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44319-3

  • Online ISBN: 978-3-642-55692-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics