Skip to main content

Computation of resonance frequencies for Maxwell equations in non-smooth domains

  • Chapter
Topics in Computational Wave Propagation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Summary

We address the computation by finite elements of the non-zero eigenvalues of the (curl, curl) bilinear form with perfect conductor boundary conditions in a polyhedral cavity. One encounters two main difficulties: (i) The infinite dimensional kernel of this bilinear form (the gradient fields), (ii) The unbounded singularities of the eigen-fields near corners and edges of the cavity. We first list possible variational spaces with their functional properties and provide a short description of the edge and corner singularities. Then we address different formulations using a Galerkin approximation by edge elements or nodal elements.

After a presentation of edge elements, we concentrate on the functional issues connected with the use of nodal elements. In the framework of conforming methods, nodal elements are mandatory if one regularises the bilinear form (curl, curl) in order to get rid of the gradient fields. A plain regularisation with the (div, div) bilinear form converges to a wrong solution if the domain has reentrant edges or corners. But remedies do exist We will present the method of addition of singular functions, and the method of regularisation with weight, where the (div, div) bilinear form is modified by the introduction of a weight which can be taken as the distance to reentrant edges or corners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Adam, P. Arbenz, R. Geus. Eigenvalue solvers for electromagnetic fields in cavities. Technical Report 275, Institute of Scientific Computing, ETH Zurich 1997.

    Google Scholar 

  2. C. Amrouche, C. Bernardi, M. Dauge, V. Girault. Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Apel, V. Mehrmann, D. Watkins. Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4459–4473.

    Article  MATH  Google Scholar 

  4. F. Assous, P. Ciarlet, E. Sonnendrucker. Résoludon des équations de Maxwell dans un domaine avec un coin rentrant. C. R. Acad. Sc. Paris, Série I 323 (1996) 203–208.

    MathSciNet  MATH  Google Scholar 

  5. I. Babuiška, J. E. Osborn. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Camp. 52(186) (1989) 275–297.

    Google Scholar 

  6. K.-J. Bathe, C. Nitikitpaiboon, X. Wang. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Compur. & Structures 56(2–3) (1995) 225–237.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Ben Belgacem, C. Bernardi, M. Costabel, M. Dauge. Un résultat de densité pour les équations de Maxwell. C. R. Acad. Sri. Paris Sér I Math. 324(6) (1997) 731–736.

    Article  MATH  Google Scholar 

  8. A. N. Bespalov. Finite element method for the eigenmode problem of a RF cavity resonator. Soviet J. Numer. Anal Math. Modelling 3(3) (1988) 163–178.

    Article  MathSciNet  Google Scholar 

  9. M. Birman, M. Solomyak. L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42(6) (1987) 75–96.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Birman, M. Solomyak. On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5(1) (1993) 125–139.

    MathSciNet  Google Scholar 

  11. D. Boffi. Fortin operator and discrete compactness for edge elements. Numer Math. 87(2) (2000) 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Boffi. A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14(1) (2001) 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Boffi, F. Brezzi, L. Gastaldi. On the convergence of eigenvalues for mixed formulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2) (1997) 131–154(1998). Dedicated to Ennio De Giorgi.

    MathSciNet  MATH  Google Scholar 

  14. D. Boffi, F Brezzi, L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69(229) (2000) 121–140.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Boffi, L. Demkowicz, M. Costabel. Discrete competness for p and hp 2d edge finite elements, TICAM Report 02-21, Université de Bordeaux 1, 2002.

    Google Scholar 

  16. D. Boffi, R. G. Duran, L Gastaldi. A remark on spurious eigenvalues in a square. Appl. Math. Lett. 12(3) (1999) 107–114.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Boffi, M. Farina, L Gastaldi. On the approximation of Maxwell’s eigenproblem in general 2D domains. Comput. & Structures 79 (2001)1089–1096.

    Article  Google Scholar 

  18. D. Boffi. P. Fernandes, L. Gastaldi. 1. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM I Numer Anal. 36 (1999) 1264–1290.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.-S. Bonnet-Ben Dhia, C. Hazard, S. Lohrengel. A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM I Appl. Math. 59(6) (1999) 2028–2044 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Caorsi. R Fernandes, M. Raffetto. On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer Anal. 38(2) (2000) 580–607 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Caorsi, P. Fernandes. M. Raffetto. Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. M2AN Math. Model. Numer Anal. 35(2) (2001) 331–354.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Ciarlet, Jr., C. Hazard, S. Lohrengel. Les équations de Maxwell dans un polyèdre: un résultat de densité. C. R. Acad. Sc. Paris, Série I Math. 326(11) (1998) 1305–1310.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Costabel. A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157(2) (1991) 527–541.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Costabel, M. Dauge. Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités. On line publication (Dec. 1998): http: //www.maths.univ-rennesl.fr/~dauge.

    Google Scholar 

  25. M. Costabel. M. Dauge. Un résultat de densité pour les equations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sc. Paris, Série I 327 (1998) 849–854.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Costabel, M. Dauge. Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22 (1999) 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Costabel, M. Dauge. Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151(3) (2000) 221–276.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Costabel, M. Dauge. Weighted regularization of Maxwell equations in polyhedral domains. Nunier Math. 93(2) (2002) 239–277.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Costabel, M. Dauge, D. Martin. Numerical investigation of a boundary penalization method for Maxwell equations. In P. Neittaanmäki, T. Tiihonen, P. Tarvainen, editors, Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, pp. 214–221. World Scientific, Singapore 2000.

    Google Scholar 

  30. M. Costabel, M. Dauge, D. Martin, G. Vial. Weighted regularization of Maxwell equations — computations in curvilinear polygons. In Proceedings of the 4th European Conference on Numerical Mathematics and Advanced Applications. Springer 2002.

    Google Scholar 

  31. M. Costabel, M. Dauge, S. Nicaise. Singularities of Maxwell interface problems. M2AN Math. ModeL Numer Anal. 33(3) (1999) 627–649.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Costabel, M. Dauge, C. Schwab. Exponential convergence of the hp-FEM for the weighted regularization of Maxwell equations in polygonal domains. In preparation.

    Google Scholar 

  33. M. Crouzeix, P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Infonnat. Recherche Opérationnelle Sér Rouge 7(R-3) (1973) 33–75.

    MathSciNet  Google Scholar 

  34. M. Dauge. “Simple” corner-edge asymptotics. On line publication (Dec. 2000): http://www.maths.univ-rennesl.fr/~dauge.

    Google Scholar 

  35. M. Dauge. Elliptic Boundary Value Problems in Corner Domains — smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag, Berlin 1988.

    Google Scholar 

  36. M. Dauge. Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper Theory. 15 (1992) 227–261.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Dauge. Singularities of corner problems and problems of corner singularities. In Actes du 30ème Congrès d’Analyse Numérique: CANum '98 (Arles, 1998), pp. 1940 (electronic). Soc. Math. Appl. Indust., Paris 1999.

    Google Scholar 

  38. L. Demkowicz, P. Monk. Discrete compactness and the approximation of Maxwell’s equations in ℝ3. Math. Comp. 70 (2001) 507–523.

    MathSciNet  MATH  Google Scholar 

  39. J. Descloux. Essential numerical range of an operator with respect to a coercive form and the approximation of its spectrum by the Galerkin method. SIAM J. Numer. Anal. 18(6) (1981) 1128–1133.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Descloux, N. Nassif, J. Rappaz. On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12(2) (1978) 97–112, iii.

    MathSciNet  MATH  Google Scholar 

  41. G. Fichera. Comportamento asintotico del campo elettrico e della densità elettrica in prossimità dei punti singolari della superficie conduttore. Rend. Sem. Mat. Univ. e Polirec. Torino 32(1973/74) 111–143.

    Google Scholar 

  42. N. Filonov. Système de Maxwell dans des domaines singuliers. Thesis, Université de Bordeaux 1, 1996.

    Google Scholar 

  43. E. Garcia. Résolution des équation de Maxwell instationnaires dans des domaine non convexe, Ia méthode du complément singulier. Thèse, Université Pierre et Marie Curie 2002.

    Google Scholar 

  44. L. Gastaldi. Mixed finite element methods in fluid structure systems. Numer Math. 74(2) (1996) 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Girault, R Raviart. Finite Element Methods for the Navier—Stokes Equations, Theory and Algorithms. Springer series in Computational Mathematics, 5. Springer-Verlag, Berlin 1986.

    Google Scholar 

  46. P. Grisvard. Boundary Value Problems in Non-Smooth Domains. Pitman, London 1985.

    Google Scholar 

  47. C. Hazard. Numerical simulation of corner singularities: a paradox in Maxwell-like problems. C. R. Mecanique 330 (2002) 57–68.

    Article  MATH  Google Scholar 

  48. C. Hazard, S. Lohrengel. A singular field method for Maxwell’s equations: Numerical aspects in two dimensions. SIAM J. Numer Anal. (2002) To appear.

    Google Scholar 

  49. R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica (2002) 237–339.

    Google Scholar 

  50. F. Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986). Vol. 64, pp. 509–521 1987.

    MathSciNet  MATH  Google Scholar 

  51. F. Kikuchi. On a discrete compactness property for the Nééhlec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(3) (1989) 479–490.

    MathSciNet  MATH  Google Scholar 

  52. V. A. Kondrat'ev. Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16(1967) 227–313.

    Google Scholar 

  53. R. Leis. Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106 (1968) 213–224.

    Article  MathSciNet  Google Scholar 

  54. D. Martin. Mélina. On line documentation: http://www.maths.univ-rennesl.fr/~dmartin.

    Google Scholar 

  55. S.A. Nazarov, B. A. Plamenevskii. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Expositions in Mathematics 13. Walter de Gruyter, Berlin 1994.

    Book  MATH  Google Scholar 

  56. J.-C. Nédélec. Mixed finite elements in ℝ3. Numer Math. 35 (1980) 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  57. J.-C. Nédélec. A new family of mixed finite elements in ℝ3. Numer Math. 50(1)(1986) 57–81.

    Article  MathSciNet  MATH  Google Scholar 

  58. K. Preiss, O. Biró, I. Ticar. Gauged current vector potential and reentrant corners in the FEM analysis of 3D eddy currents. IEEE Transactions on Magnetics 36(4) (2000) 840–843.

    Article  Google Scholar 

  59. B-A. Raviart, J. M. Thomas. Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31(138) (1977) 391–413.

    MathSciNet  MATH  Google Scholar 

  60. H. Schmitz, K. Volk, W. Wendland. Three-dimensional singularities of elastic fields near vertices. Numer Methods Partial Differential Equations 9(3) (1993) 323–337.

    Article  MathSciNet  MATH  Google Scholar 

  61. C. Schwab. p-and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York 1998.

    MATH  Google Scholar 

  62. M. Sun, C. Xenophontos. Reliability of an hp algorithm for buckling analysis. Proceedings of IASS-IACM 2000, Fourth International Colloquium on Computation of Shell and Spatial Structures, 2000 (CD-Rom).

    Google Scholar 

  63. H. Vandeven. On the eigenvalues of second-order spectral differentiation operators. Comput. Methods Appl. Mech. Engrg. 80(1–3) (1990) 313–318. Spectral and high order methods for partial differential equations (Conio, 1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costabel, M., Dauge, M. (2003). Computation of resonance frequencies for Maxwell equations in non-smooth domains. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics