Skip to main content

Principles of Broadband Seismometry

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

Weak-motion sensor; Very broadband seismometer

Introduction

There are many different types of instruments which can be used to detect ground motion. Broadband seismometers belong to a class of sensors called inertial sensors. In contrast, methods of sensing ground motion such as strainmeters and Global Positioning Systems (GPS) are not considered inertial sensors.

In this entry the principles of operation of broadband seismometers are discussed and contrasted with those of passive seismometers. The criteria for selecting a seismometer are discussed. Particular attention is paid to noise-generating mechanisms, including self-noise generated within the sensor, environmental sensitivities, and installation-related noise.

Applications

Broadband seismometers are very versatile instruments which have many applications in the field of earthquake engineering, including:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aki K, Richards P (2002) Quantitative seismology, 2nd edn. University Science, Sausalito

    Google Scholar 

  • Berger J, Davis P, Ekström G (2004) Ambient Earth noise: A survey of the global seismographic network. J Geophys Res 209, B11307

    Google Scholar 

  • Bormann P (2002) Seismic signals and noise, chapter 4. In: Bormann P (ed) New manual of seismological observatory practice, vol 1. GeoForschungsZentrum, Potsdam

    Google Scholar 

  • Brune J, Oliver J (1959) The seismic noise of the Earth’s surface. Bull Seism Soc Am 49:349–353

    Google Scholar 

  • Clinton F, Heaton T (2002) Potential advantages of a strong motion velocity meter over a strong motion accelerometer. Seism Res Lett 73(3):332–342

    Article  Google Scholar 

  • EarthScope (2013) Transportable seismic network: imaging the Earth’s interior. Retrieved 29 May 2014, from USArray: http://www.usarray.org/files/docs/pubs/TA_Host-a-Station_Imaging_0411-Final.pdf

  • Evans JR, Followill F, Hutt CR, Kromer RP, Nigbor RL, Ringler AT, Steim JM, Wielandt E (2010) Method for calculating self-noise spectra and operating ranges for seismographic inertial sensors and recorders. Seism Res Lett 81(4):640–646

    Article  Google Scholar 

  • Forbriger T, Widmer-Schnidrig R, Wielandt E, Hayman M, Ackerley N (2010) Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys J Int 183(1):303–312

    Article  Google Scholar 

  • Geotech Instruments, LLC (2001) Short-period seismometer model S-13 and GS-13. Retrieved 12 Nov 2013, from http://www.geoinstr.com/ds-s13.pdf

  • Hanka W (2002) Parameters which influence the very long-period performance of a seismological station: examples from the GEOFON network, Section 7.4.4. In: Bormann P (ed) New manual of seismological observatory practice, vol 1. GeoForschungsZentrum, Potsdam, pp 64–74

    Google Scholar 

  • Holcomb LG, Hutt CR (1992) An evaluation of installation methods for STS-1 seismometers. Open-file report 92–302. US Geological Survey, Albuquerque

    Google Scholar 

  • Hutt CR, Ringler AT (2011) Some possible causes of and corrections for STS −1 response changes in the global seismographic network. Seism Res Lett 82(4):560–571

    Article  Google Scholar 

  • Lee WHK, Evans JR, Huang B-S, Hutt CR, Lin C-J, Liu C-C, Nigbor RL (2012) Measuring rotational ground motions in seismological practice. In: Bormann P (ed) New Manual of Seismological Observatory Practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam, p. 1–27

    Google Scholar 

  • Longuet-Higgins MS (1950) A theory of the origin of microseisms. Phil Trans R Soc A 243(857):1–35

    Article  MATH  MathSciNet  Google Scholar 

  • McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seism Soc Am 94(4):1517–1527

    Article  Google Scholar 

  • Motchenbacher CD, Connelly JA (1993) Low-noise electronic system design. Wiley, New York

    Google Scholar 

  • Nanometrics Inc (2009) Trillium 120P/PA seismometer user guide. (15149R6). Nanometrics, Inc, Kanata

    Google Scholar 

  • Nanometrics Inc (2013) Trillium posthole user guide. (17217R5). Nanometrics, Inc, Kanata

    Google Scholar 

  • Peterson J (1993) Observations and modeling of seismic background noise. Open-file report 93–322. US Geological Survey, Albuquerque

    Google Scholar 

  • Phillips CL, Harbor RD (1991) Feedback control systems, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ringler AT, Hutt CR (2010) Self-noise models of seismic instruments. Seism Res Lett 81(6):972–983

    Article  Google Scholar 

  • Scintrex Limited (2007June 21) CG-5 Scintrex Autograv System operation manual. Retrieved 7 May 2012, from Scintrex web site: http://www.scintrexltd.com/documents/CG5.v2.manual.pdf

  • Sercel - France (2012) Analog seismic sensors. Retrieved 11 Dec 2013, from Sercel web site: http://www.sercel.com/products/Lists/ProductSpecification/analog-seismic-sensors-specifications-Sercel-Seismometers.pdf

  • Sleeman R, van Wettum A, Trampert J (2006) Three-channel correlation analysis: a new technique to measure instrumental noise of digitizers and seismic sensors. Bull Seism Soc Am 96(1):258–271

    Article  Google Scholar 

  • Strasser F, Bommer J (2009) Review: strong ground motions—have we seen the worst? Bull Seism Soc Am 99(5):2613–2637

    Article  Google Scholar 

  • Trnkoczy A (2002) Factors affecting seismic site quality and site selection procedure, Section 7.1. In: Bormann P (ed) New manual of seismological observatory practice, vol 1. GeoForschungsZentrum, Potsdam, pp 1–14

    Google Scholar 

  • Webb S, Crawford W (2010) Shallow-water broadband OBS seismology. Bull Seism Soc Am 100(4):1770–1778

    Article  Google Scholar 

  • Widmer-Schnidrig R, Kurrle D (2006) Evaluation of installation methods for Streckeisen STS-2 seismometers. Retrieved 25 Oct 2013, from http://www.geophys.uni-stuttgart.de/~widmer/ge2.pdf

  • Wielandt E (2002) Seismic sensors and their calibration, chapter 5. In: Bormann P (ed) New manual of seismological observatory practice, vol 1. GeoForschungsZentrum, Potsdam

    Google Scholar 

  • Wielandt E, Streckeisen G (1982) The leaf-spring seismometer – design and performance. Bull Seis Soc Am 72(6):2349–2367

    Google Scholar 

  • Working Group on Instrumentation, Siting, Installation, and Site Metadata (2008) Instrumentation guidelines for the advanced national seismic system. Open file report 2008-1262. US Geological Survey, Reston

    Google Scholar 

  • Zürn W, Wielandt E (2007) On the minimum of vertical seismic noise near 3 mHz. Geophys J Int 168:647–658

    Article  Google Scholar 

  • Zürn W, Exß J, Steffen H, Kroner C, Jahr T, Westerhaus M (2007) On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys J Int 171(2):780–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Ackerley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Copyright © 2014 Nanometrics Inc.

About this entry

Cite this entry

Ackerley, N. (2014). Principles of Broadband Seismometry. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_172-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_172-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics