Skip to main content

Algebras from Rough Sets

  • Chapter
Rough-Neural Computing

Part of the book series: Cognitive Technologies ((COGTECH))

Summary

Rough set theory has seen nearly two decades of research on both foundations and on diverse applications. A substantial part of the work done on the theory has been devoted to the study of its algebraic aspects. ‘Rough algebras’ now abound, and have been shown to be instances of various algebraic structures, both well-established and relatively new, e.g., quasi-Boolean, Stone, double Stone, Nelson, Lukasiewicz algebras, on the one hand, and topological quasi-Boolean, prerough and rough algebras, on the other. More interestingly and importantly, some of these latter algebras find a new dimension (interpretation) through representations as rough structures. An attempt is made here to present the various relationships and to discuss the representation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. M. Banerjee. Rough sets and three-valued Lukasiewicz logic. Fundamenta Informaticae, 32: 213–220, 1997.

    Google Scholar 

  2. M. Banerjee, M.K. Chakraborty. A category for rough sets. In R. Slowirński, J. Stefanowski, editorsProceedings of the 1st International Workshop on Rough Sets: State of the Art and Perspectives,a volume of Foundations of Computing and Decision Sciences (special issue), 18(3/4): 167–180, 1993.

    MathSciNet  Google Scholar 

  3. M. Banerjee, M.K. Chakraborty. Rough algebra.Bulletin of the Polish Academy of Sciences. Mathematics41(4): 293–297, 1993.

    MathSciNet  MATH  Google Scholar 

  4. M. Banerjee, M.K. Chakraborty. Rough sets through algebraic logic.Fundamenta Informaticae28(3/4): 211–221, 1996.

    MathSciNet  MATH  Google Scholar 

  5. G. Birkhoff. Lattice Theory. AMS Colloquium 25, Providence RI, 1967.

    Google Scholar 

  6. R. Biswas, S. Nanda. Rough groups and rough subgroups.Bulletin of the Polish Academy of Sciences. Mathematics42: 251–254, 1994.

    MathSciNet  MATH  Google Scholar 

  7. V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu.Lukasiewicz-Moisil Algebras.North–Holland, Amsterdam, 1991.

    MATH  Google Scholar 

  8. Z. Bonikowski. A certain conception of the calculus of rough sets.Notre Dame Journal of Formal Logic33: 412–421, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Cattaneo. Abstract approximation spaces for rough theories. In L. Polkowski, A. Skowron, editorsRough Sets in Knowledge Discovery 1. Methodology and Applications59–98, Physica, Heidelberg, 1998.

    Google Scholar 

  10. M. Chuchro. On rough sets in topological Boolean algebras. In W.P. Ziarko, editorRough Sets Fuzzy Sets and Knowledge Discovery. Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD ‘84) 157–160, Springer, London, 1994.

    Google Scholar 

  11. R. Cignoli. Representation of Lukasiewicz and Post algebras by continuous functions.Colloquium Mathematicum24(2): 127–138, 1972.

    MathSciNet  MATH  Google Scholar 

  12. S. Comer. An algebraic approach to the approximation of information.Fundamenta Informaticae14: 492–502, 1991.

    MathSciNet  MATH  Google Scholar 

  13. S. Comer. Perfect extensions of regular double Stone algebras.Algebra Universalis34: 96–109,1995.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Düntsch. Rough sets and algebras of relations. In E. Orlowska, editorIncomplete Information: Rough Set Analysis95–108, Physica, Heidelberg, 1998.

    Chapter  Google Scholar 

  15. G. Epstein, A. Horn. Chain based lattices.Journal of Mathematics55(1): 65–84, 1974. Reprinted in: D.C. Rine, editor,Computer Science and Multiple-Valued Logic: Theory and Applications58–76, North-Holland, Amsterdam, 1991.

    Google Scholar 

  16. D. Higgs.A category approach to Boolean-valued set theory. Preprint. University of Waterloo, 1973.

    Google Scholar 

  17. L. Iturrioz. Rough sets and three-valued structures. In E. Orlowska, editorLogic at Work: Essays Dedicated to the Memory of Helena Rasiowa596–603, Physica, Heidelberg, 1999.

    Google Scholar 

  18. T.B. Iwitiski. Algebraic approach to rough sets.Bulletin of the Polish Academy of Sciences. Mathematics35(9/10): 673–683, 1987.

    MathSciNet  Google Scholar 

  19. J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron. Rough sets: A tutorial. In S.K. Pal, A. Skowron, editorsRough Fuzzy Hybridization: A New Trend in Decision-Making3–98, Springer, Singapore, 1999.

    Google Scholar 

  20. N. Kuroki. Rough ideals in semigroups.Information Sciences100: 139–163, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Maluszyński, A. Vittoria. Towards rough datalog: Embedding rough sets in Prolog. (this book).

    Google Scholar 

  22. Gr. C. Moisil. Sur les idéaux des algébres lukasiewicziennes trivalentes.Annales Universitatis C.I. Parhon Acta Logica3: 83–95, 1960.

    MathSciNet  MATH  Google Scholar 

  23. A. Monteiro. Construction des algebres de Lukasiewicz trivalentes dans les algebres de Boole monadiques.Mathematica Japonicae12: 1–23, 1967.

    MathSciNet  MATH  Google Scholar 

  24. D. Mundici. The C*-algebras of three-valued logic. In R. Ferro, C. Bonotto, S. Valentini, A. Zanardo, editorsLogic Colloquium’8861–77, North-Holland, Amsterdam, 1989.

    Google Scholar 

  25. A. Obtulowicz. Rough sets and Heyting algebra valued sets.Bulletin of the Polish Acaemy of Sciences. Mathematics, 35(9/10): 667–671, 1987.

    MathSciNet  MATH  Google Scholar 

  26. E. Orlowska. Introduction: what you always wanted to know about rough sets. In E. Orlowska, editorIncomplete Information: Rough Set Analysis1–20, Physica, Heidelberg, 1998.

    Chapter  Google Scholar 

  27. P. Pagliani. Rough set theory and logic-algebraic structures. In E. Orlowska, editorIncomplete Information: Rough Set Analysis109–190, Physica, Heidelberg, 1998.

    Chapter  Google Scholar 

  28. Z. Pawlak.Rough sets.International Journal of Computer Information Sciences, 11(5): 341–356, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Pawlak.Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  30. J.A. Pomykala. Approximation, similarity and rough construction. Report number CT-93–07 of ILLC Prepublication Series, University of Amsterdam, 1993.

    Google Scholar 

  31. J. Pomykala, J.A. Pomykala. The Stone algebra of rough sets.Bulletin ofthePolish Academy of Sciences. Mathematics, 36: 495–508, 1988.

    MathSciNet  MATH  Google Scholar 

  32. H. Rasiowa. An Algebraic Approach to Non-Classical Logics. North-Holland, Amsterdam, 1974.

    MATH  Google Scholar 

  33. J. Sen.Some Embeddings in Linear Logic and Related Issues.Ph.D. Dissertation, University of Calcutta, 2001.

    Google Scholar 

  34. R. Sikorski.Boolean Algebras.Springer, New York, 1969.

    Book  MATH  Google Scholar 

  35. D. Vakarelov. Notes on 9V -lattices and constructive logic with strong negation.Studia Logica36: 109–125, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Wasilewska, L. Vigneron. Rough equality algebras. In P.P. Wang, editorProceedings of the International Workshop on Rough Sets and Soft Computing at 2nd Annual Joint Conference on Information Sciences (JCIS’95)26–30, Raleigh, NC, 1995.

    Google Scholar 

  37. A. Wasilewska, L. Vigneron. On generalized rough sets. InProceedings of the 5th Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Joint Conference on Information Sciences (CJCIS’97)Durham, NC, 1997.

    Google Scholar 

  38. A. Wiweger. On topological rough sets.Bulletin of the Polish Acaemy of Sciences. Mathematics37: 51–62, 1988.

    Google Scholar 

  39. Y.Y. Yao. Constructive and algebraic methods of the theory of rough sets.Information Sciences109: 21–47, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y.Y. Yao. Generalized rough set models. In L. Polkowski, A. Skowron, editorsRough Sets in Knowledge Discovery 1. Methodology and Applications286–318, Physica, Heidelberg, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banerjee, M., Chakraborty, M.K. (2004). Algebras from Rough Sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds) Rough-Neural Computing. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18859-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18859-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62328-8

  • Online ISBN: 978-3-642-18859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics