Skip to main content

Graph Exploration by a Finite Automaton

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

A finite automaton, simply referred to as a robot, has to explore a graph whose nodes are unlabeled and whose edge ports are locally labeled at each node. The robot has no a priori knowledge of the topology of the graph or of its size. Its task is to traverse all the edges of the graph. We first show that, for any K-state robot and any d≥ 3, there exists a planar graph of maximum degree d with at most K+1 nodes that the robot cannot explore. This bound improves all previous bounds in the literature. More interestingly, we show that, in order to explore all graphs of diameter D and maximum degree d, a robot needs Ω(Dlogd) memory bits, even if we restrict the exploration to planar graphs. This latter bound is tight. Indeed, a simple DFS at depth D+1 enables a robot to explore any graph of diameter D and maximum degree d using a memory of size O(Dlogd) bits. We thus prove that the worst case space complexity of graph exploration is Θ(Dlogd) bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Computing 29, 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antelmann, H., Budach, L., Rollik, H.A.: On universal traps. Elektronische Informationsverarbeitung und Kybernetic, EIK 15(3), 123–131 (1979)

    MATH  MathSciNet  Google Scholar 

  3. Asser, G.: Bemerkungen zum Labyrinth-Problem. Elektronische Informationsverarbeitung und Kybernetic, EIK 13(4-5), 203–216 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph learning by a mobile robot. In: 8th Conf. on Comput. Learning Theory, pp. 321–328 (1995)

    Google Scholar 

  5. Bar-Eli, E., Berman, P., Fiat, A., Yan, R.: On-line navigation in a room. J. Algorithms 17, 319–341 (1994)

    Article  MathSciNet  Google Scholar 

  6. Bar-Noy, A., Borodin, A., Karchmer, M., Linial, N., Werman, M.: Bounds on universal sequences. SIAM J. Computing 18(2), 268–277 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: 30th Ann. Symp. on Theory of Computing (STOC), pp. 269–278 (1998)

    Google Scholar 

  8. Bender, M., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: 35th Ann. Symp. on Foundations of Computer Science (FOCS), pp. 75–85 (1994)

    Google Scholar 

  9. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Computing 26, 110–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: 19th Symposium on Foundations of Computer Science (FOCS), pp. 132–142 (1978)

    Google Scholar 

  11. Blum, M., Sakoda, W.: On the capability of finite automata in 2 and 3 dimensional space. In: 18th Ann. Symp. on Foundations of Computer Science (FOCS), pp. 147–161 (1977)

    Google Scholar 

  12. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18, 231–254 (1995)

    Google Scholar 

  13. Budach, L.: On the solution of the labyrinth problem for finite automata. Elektronische Informationsverarbeitung und Kybernetic, EIK 11(10-12), 661–672 (1975)

    MATH  MathSciNet  Google Scholar 

  14. Budach, L.: Environments, labyrinths and automata. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 54–64. Springer, Heidelberg (1977)

    Google Scholar 

  15. Budach, L.: Automata and labyrinths. Math. Nachrichten, 195–282 (1978)

    Google Scholar 

  16. Coy, W.: Automata in labyrinths. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 65–71. Springer, Heidelberg (1977)

    Google Scholar 

  17. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. J. ACM 45, 215–245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32, 265–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Memory. In: 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 588–597 (2002)

    Google Scholar 

  20. Döpp, K.: Automaten in Labyrinthen. Elektronische Informationsverarbeitung und Kybernetic, EIK 7(2), 79–94 & 7(3), 167–190 (1971)

    Google Scholar 

  21. Dudek, G., Jenkins, M., Milios, E., Wilkes, D.: Robotic Exploration as Graph Construction. IEEE Transaction on Robotics and Automation 7(6), 859–865 (1991)

    Article  Google Scholar 

  22. Duncan, C., Kobourov, S., Kumar, V.: Optimal constrained graph exploration. In: 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 807–814 (2001)

    Google Scholar 

  23. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective Tree Exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Fraigniaud, P., Ilcinkas, D.: Directed Graphs Exploration with Little Memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Hemmerling, A.: Labyrinth Problems: Labyrinth-Searching Abilities of Automata. Teubner-Texte zur Mathematik, vol. 114. B. G. Teubner Verlagsgesellschaft, Leipzig (1989)

    MATH  Google Scholar 

  26. Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 433–444. Springer, Heidelberg (1981)

    Google Scholar 

  27. Kozen, D.: Automata and planar graphs. Fund. Computat. Theory (FCT), 243–254 (1979)

    Google Scholar 

  28. López-Ortiz, A., Schuierer, S.: On-line parallel heuristics and robot searching under the competitive framework. In: 8th Scandinavian Workshop on Algorithm Theory, SWAT (2002)

    Google Scholar 

  29. Müller, H.: Endliche Automaten und Labyrinthe. Elektronische Informationsverarbeitung und Kybernetic, EIK 7/4, 261–264 (1971)

    Google Scholar 

  30. Müller, H.: Automata catching labyrinths with at most three components. Elektronische Informationsverarbeitung und Kybernetic, EIK 15(1-2), 3–9 (1979)

    MATH  Google Scholar 

  31. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rabin, M.O.: Maze threading automata. Seminar talk presented at the University of California at Berkeley (October 1967)

    Google Scholar 

  33. Rao, N., Kareti, S., Shi, W., Iyengar, S.: Robot navigation in unknown terrains: Introductory survey of length,non-heuristic algorithms. Tech. Report ORNL/TM-12410, Oak Ridge National Lab. (1993)

    Google Scholar 

  34. Rollik, H.A.: Automaten in planaren Graphen. OPAALS 2010 13, 287–298 (1980), also in LNCS 67, pp. 266–275 (1979)

    Google Scholar 

  35. Shannon, C.E.: Presentation of a maze-solving machine. In: 8th Conf. of the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D. (2004). Graph Exploration by a Finite Automaton. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics