Skip to main content

Abstract

We study the complexity of computing k-wise independent and ε-biased generators G : {0, 1}n → {0, 1}m. Specifically, we refer to the complexity of computing Gexplicitly, i.e. given x ∈ {0, 1}n and i ∈ {0, 1}log m computing the i-th output bit of G(x). [MNT90] show that constant depth circuits of size poly(n) cannot explicitly compute k-wise independent and ε-biased generators with seed length \(n \leq 2^{\log^{o(1)} m}\).

In this work we show that DLOGTIME-uniform constant depth circuits of size poly(n) with parity gates can explicitly compute k-wise independent and ε-biased generators with seed length n roughly \(\log m \ll 2^{\log^{o(1)} m}\). In some cases the seed length of our generators is optimal up to constant factors, and in general up to polynomial factors. To obtain our results, we show a new construction of combinatorial designs, and we also show how to compute, in DLOGTIME-uniform AC 0, random walks of length logc n over certain expander graphs of size 2n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the complexity of reductions. Comput. Complexity 10(2), 117–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maximal independent set problem. J. of algorithms 7, 567–583 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures Algorithms 3(3), 289–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ajtai, M.: Approximate counting with uniform constant-depth circuits. In: Advances in computational complexity theory, New Brunswick, NJ,1990 pp. 1–20 (1990) Amer. Math. Soc. Providence, RI.

    Google Scholar 

  5. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC 1. J. Comput. System Sci. 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform nc1. RAIRO Theoretical Informatics and Applications 35, 259–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chor, B., Goldreich, O.: On the power of two-point based sampling. Journal of Complexity 5(1), 96–106 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem and t-resilient functions. In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, October 21–23, pp. 396–407. IEEE, Los Alamitos (1985)

    Chapter  Google Scholar 

  9. Gabber, O., Galil, Z.: Explicit constructions of linear size superconcentrators. JCSS 22, 407–420 (1981)

    MATH  MathSciNet  Google Scholar 

  10. Goldreich, O.: Modern cryptography, probabilistic proofs and pseudorandomness. Algorithms and Combinatorics, vol. 17, Springer, Berlin (1999)

    Google Scholar 

  11. Hartman, T., Raz, R.: On the distribution of the number of roots of polynomials and explicit weak designs. Random Structures & Algorithms 23(3), 235–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jimbo, S., Maruoka, A.: Expanders obtained from affine transformations. Combinatorica 7(4), 343–355 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Margulis, G.A.: Explicit construction of concentrator. Problems Inform. Transmission 9, 325–332 (1973)

    MathSciNet  Google Scholar 

  14. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 14-16, pp. 235–243. ACM Press, New York (1990)

    Google Scholar 

  15. Nepomnjščiĭ, V.A.: Rudimentary predicates and turing calculations. Soviet it Mathematics-Doklady  11(6), 1462–1465 (1970)

    Google Scholar 

  16. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the Twenty-Second Annual ACM Symposium on the Theory of Computing, pp. 213–223 (1990)

    Google Scholar 

  17. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. Theory 42, 1710–1722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Technical Report TR04-020, Electronic Colloquium on Computational Complexity (2004), http://www.eccc.uni-trier.de/eccc to appear in Journal of Computational Complexity

  20. van Lint, J.H.: Introduction to coding theory. Graduate Texts in Mathematics, 3rd edn., vol. 86. Springer, Berlin (1999)

    Google Scholar 

  21. Vollmer, H.: Introduction to circuit complexity. Springer, Berlin (1999)

    Google Scholar 

  22. Goldreich, O., Bar-Yossef, Z., Wigderson, A.: Deterministic amplification of space bounded probabilistic algorithms. In: Proceedings of the 14nd Annual IEEE Conference on Computational Complexity, pp. 188–198 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutfreund, D., Viola, E. (2004). Fooling Parity Tests with Parity Gates. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2004 2004. Lecture Notes in Computer Science, vol 3122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27821-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27821-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22894-3

  • Online ISBN: 978-3-540-27821-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics