Skip to main content

Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials

  • Conference paper
Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis (MMBIA 2004, CVAMIA 2004)

Abstract

A novel method is proposed for performing multi-label, semi-automated image segmentation. Given a small number of pixels with user-defined labels, one can analytically (and quickly) determine the probability that a random walker starting at each unlabeled pixel will first reach one of the pre-labeled pixels. By assigning each pixel to the label for which the greatest probability is calculated, a high-quality image segmentation may be obtained. Theoretical properties of this algorithm are developed along with the corresponding connections to discrete potential theory and electrical circuits. This algorithm is formulated in discrete space (i.e., on a graph) using combinatorial analogues of standard operators and principles from continuous potential theory, allowing it to be applied in arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wallace, R., Ong, P.W., Schwartz, E.: Space variant image processing. International Journal of Computer Vision 13, 71–90 (1994)

    Article  Google Scholar 

  2. Grady, L.: Space-Variant Computer Vision: A Graph-Theoretic Approach. PhD thesis, Boston University, Boston, MA (2004)

    Google Scholar 

  3. Kakutani, S.: Markov processes and the Dirichlet problem. Proc. Jap. Acad. 21, 227–233 (1945)

    Article  MathSciNet  Google Scholar 

  4. Doyle, P., Snell, L.: Random walks and electric networks, 22 in Carus mathematical monographs. Mathematical Association of America, Washington, D.C. (1984)

    Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. John Wiley and Sons, Chichester (1989)

    Book  Google Scholar 

  6. Biggs, N.: Algebraic Graph Theory in Cambridge Tracts in Mathematics, vol. 67. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  7. Simon, H.D., Teng, S.H.: How good is recursive bisection? SIAM Journal of Scientific Computing 18, 1436–1445 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, P.K., Schlag, M.D.F., Zien, J.Y.: Spectral k-way ratio-cut partitioning and clustering. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 13, 1088–1096 (1994)

    Article  Google Scholar 

  9. Alpert, C.J., Yao, S.Z.: Spectral partitioning: the more eigenvectors, the better. In: Proceedings of the 32nd ACM/IEEE conference on Design automation conference, ACM/IEEE, pp. 195–200. ACM Press, New York (1995)

    Chapter  Google Scholar 

  10. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 884–900 (1996)

    Article  Google Scholar 

  11. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Ninth IEEE International Conference on Computer Vision, International Conference on Computer Vision, vol. 1, pp. 313–319. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  12. Bar-Hillel, A., Weinshall, D.: Learning with equivalence constraints and the relation to multiclass learning. In: 16th Conference on Learning Theory, Washington DC, pp. 640–654 (2003)

    Google Scholar 

  13. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: International Conference on Computer Vision, vol. I, pp. 105–112 (2001)

    Google Scholar 

  14. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  15. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semisupervised learning using gaussian fields and harmonic functions. In: Proceedings of the ICML 2003 workshop on The Continuum from Labeled to Unlabel Data in Machine Learning and Data Mining, pp. 58–65 (2003)

    Google Scholar 

  16. Meilă, M., Shi, J.: Learning segmentation by random walks. In: Advances in Neural Information Processing Systems. 13, 873–879 (2000)

    Google Scholar 

  17. Boykov, Y., Veksler, O., Zabih, R.: A new algorithm for energy minimization with discontinuities. In: Pelillo-M., H.E.R. (ed.) Energy Minimization Methods in Computer Vision and Pattern Recognition. Second International Workshop, EMMCVPR 1999, York, UK, July 26-29, pp. 205–220 (1999)

    Google Scholar 

  18. Harary, F.: Graph Theory. Addison-Wesley, Reading (1994)

    Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  20. Biggs, N.: Algebraic potential theory on graphs. Bulletin of London Mathematics Society 29, 641–682 (1997)

    Article  MathSciNet  Google Scholar 

  21. Grady, L., Schwartz, E.: Anisotropic interpolation on graphs: The combinatorial Dirichlet problem. Technical Report CAS/CNS-TR-03-014, Department of Cognitive and Neural Systems, Boston University, Boston, MA (2003)

    Google Scholar 

  22. Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra and its Applications 197,198, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  23. Fiedler, M.: Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers (1986)

    Google Scholar 

  24. Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn., vol. II. John Wiley and Sons, Inc., Chichester (1971)

    MATH  Google Scholar 

  25. Kirchhoff, G.: Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird. Poggendorf’s Annalen der Physik Chemie 72, 497–508 (1847)

    Article  Google Scholar 

  26. Chen, W.K.: Applied Graph Theory: Graphs and Electrical Networks. Applied Mathematics and Mechanics, 2nd edn. North-Holland Publishing Company, Amsterdam (1976)

    Google Scholar 

  27. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, MD (1996)

    MATH  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  29. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  30. Dongarra, J.J., Duff, I.S., Sorenson, D.C., van der Vorst, H.A.: Solving Linear Systems on Vector and Shared Memory Computers. Society for Industrial and Applied Mathematics, Philadelphia (1991)

    Google Scholar 

  31. Gremban, K.: Combinatorial preconditioners for sparse, symmetric diagonally dominant linear systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA (1996)

    Google Scholar 

  32. Shapira, Y.: Matrix-Based Multigrid: Theory and Applications. Numerical Methods and Algorithms, vol. 2. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  33. Dendy, J.E.: Black box multigrid. Journal of Computational Physics 48, 366–386 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grady, L., Funka-Lea, G. (2004). Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics