Skip to main content

Abstract

As discussed in Sect. 1.4, the electroweak interactions of fermions exhibit a symmetry under the group SU(2)w × U(1)Y. Promoting this symmetry to a gauge symmetry yields a gauge theory of the electroweak interaction. However, in contrast to the gauge bosons of the electromagnetic and of the strong interaction, the electroweak gauge bosons are massive. Therefore, the formulation of a gauge theory for the electroweak interaction requires a new concept, spontaneous symmetry breaking. By applying this concept to gauge theories we arrive at the only known form for a renormalizable quantum field theory for the weak interaction with massive gauge bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Acciari et al. (L3 coll.), Phys. Lett. B495 (2000) 18.

    ADS  Google Scholar 

  2. A.A. Akhundov, D.Yu. Bardin and T. Riemann, Nucl. Phys. B276 (1986) 1.

    ADS  Google Scholar 

  3. G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

    ADS  Google Scholar 

  4. W. Alles, C. Boyer and A. Buras, Nucl. Phys. B119 (1977) 125.

    ADS  Google Scholar 

  5. D. Albert, W.J. Marciano, D. Wyler and Z. Parsa, Nucl. Phys. B166 (1980) 460.

    ADS  Google Scholar 

  6. K.I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys. 64 (1980) 707,

    ADS  Google Scholar 

  7. K.I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys. 65 (1981) 1001, and

    ADS  Google Scholar 

  8. K.I. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys. Suppl. 73 (1982) 1.

    ADS  Google Scholar 

  9. T. Appelquist and H.R. Quinn, Phys. Lett. 39B (1972) 229.

    ADS  Google Scholar 

  10. T. Appelquist, J. Carazzone, T. Goldman and H.R. Quinn, Phys. Rev. D8 (1973) 1747.

    ADS  Google Scholar 

  11. L. Avdeev, J. Fleischer, S.M Mikhailov and O. Tarasov, Phys. Lett. B336 (1994) 560,

    ADS  Google Scholar 

  12. L. Avdeev, J. Fleischer, S.M Mikhailov and O. Tarasov, Phys. Lett. E:B349 (1995) 597.

    ADS  Google Scholar 

  13. M. Baker and S.L. Glashow, Phys. Rev. 128 (1962) 2462.

    MATH  ADS  MathSciNet  Google Scholar 

  14. I. Bars and M. Yoshimura, Phys. Rev. D6 (1972) 374.

    ADS  Google Scholar 

  15. D.Yu. Bardin, P.Ch. Christova and O.M. Federenko, Nucl. Phys. 175 (1980) 435 and

    ADS  Google Scholar 

  16. D.Yu. Bardin, P.Ch. Christova and O.M. Federenko, Nucl. Phys. 197 (1982) 1.

    ADS  Google Scholar 

  17. D.Yu. Bardin, S. Riemann and T. Riemann, Z. Phys. C32 (1986) 121.

    ADS  Google Scholar 

  18. D.Yu. Bardin, A. Leike, T. Riemann and M. Sachwitz, Phys. Lett. B206 (1988) 539.

    ADS  Google Scholar 

  19. R. Barbieri et al., Phys. Lett. B288 (1992) 95,

    ADS  Google Scholar 

  20. R. Barbieri et al., Phys. Lett. E:B312 (1993) 511, and

    Google Scholar 

  21. R. Barbieri et al., Nucl. Phys. B409 (1993) 105.

    ADS  MathSciNet  Google Scholar 

  22. D. Bardin, M. Bilenky, A. Olchevski and T. Riemann, Phys. Lett. B308 (1993) 403;

    ADS  Google Scholar 

  23. D. Bardin et al., Comp. Phys. Commun. 104 (1997) 161.

    ADS  Google Scholar 

  24. D. Bardin, W. Hollik and G. Passarino (eds.), Reports of the Working Group on Precision Calculations for the Z Resonance, (CERN-95-03, Geneva, 1995).

    Google Scholar 

  25. D. Bardin, et al., Event Generators for WW Physics in Physics at LEP 1, CERN 96–01, Vol. 2, eds. G. Altarelli, T. Sjöstrand and F. Zwirner (Geneva, 1996) p. 3.

    Google Scholar 

  26. S. Bamberger and G. Weiglein, Phys. Lett. B419 (1998) 333.

    ADS  Google Scholar 

  27. R. Barate et al. (ALEPH coll.), Phys. Lett. B495 (2000) 1.

    ADS  Google Scholar 

  28. R.E. Behrends, R.J. Finkeinstein and A. Sirlin, Phys. Rev. 101 (1956) 866.

    MATH  ADS  Google Scholar 

  29. C. Becchi, A. Rouet and R. Stora, Phys. Lett. 52B (1974) 344 and

    ADS  Google Scholar 

  30. C. Becchi, A. Rouet and R. Stora, Commun. Math. Phys. 42 (1975) 127.

    ADS  MathSciNet  Google Scholar 

  31. J. Bernstein, Rev. Mod. Phys. 46 (1974) 1.

    ADS  Google Scholar 

  32. W. Beenakker and W. Hollik, Z. Phys. C40 (1988) 141.

    ADS  Google Scholar 

  33. F.A. Berends, W.L. van Neerven and G.J.H. Burgers, Nucl. Phys. 297 (1988) 429;

    ADS  Google Scholar 

  34. F.A. Berends, W.L. van Neerven and G.J.H. Burgers, E:Nucl. Phys. 304 (1989) 921.

    Google Scholar 

  35. J. Bernabeu, A. Pich and A. Santamaria, Phys. Lett. B200 (1988) 569.

    ADS  Google Scholar 

  36. F.A. Berends et al., Z Line Shape in Z Physics at LEP 1, CERN 89–08, eds. G. Altarelli, R. Kleiss and C. Verzegnassi (Geneva, 1989) p. 89.

    Google Scholar 

  37. W. Beenakker, F.A. Berends and W.L. van Neerven, Application of Renormalization Group Methods to Radiative Corrections in Radiative Corrections for e+e- Collisions, ed. J.H. Kühn (Berlin, etc., 1989) p. 3.

    Google Scholar 

  38. W. Beenakker, F.A. Berends and S.C. van der Marck, Z. Phys. C46 (1990) 687.

    ADS  Google Scholar 

  39. W. Beenakker and A. Denner, Int. J. Mod. Phys. A9 (1994) 4837.

    ADS  Google Scholar 

  40. J.J. van der Bij and F. Hoogeveen, Nucl. Phys. B283 (1987) 477.

    ADS  Google Scholar 

  41. A. Bludman and A. Klein, Phys. Rev. 131 (1963) 2364.

    MATH  ADS  MathSciNet  Google Scholar 

  42. M. Böhm, W. Hollik and H. Spiesberger, Fortschr. Phys. 34 (1986) 687.

    Google Scholar 

  43. M. Böhm et al., Forward-backward Asymmetries in Z Physics at LEP 1, CERN 89–08, eds. G. Altarelli, R. Kleiss and C. Verzegnassi (Geneva, 1989) p. 203.

    Google Scholar 

  44. G. Burgers and F. Jegerlehner, Δr, or the Relation between the Elec-troweak Couplings and the Weak Vector Boson Masses in Z Physics at LEP 1, CERN 89–08, eds. G. Altarelli, R. Kleiss and C. Verzegnassi (Geneva, 1989) p. 7.

    Google Scholar 

  45. H. Burkhardt and B. Pietrzyk, Phys. Lett. B356 (1995) 398.

    ADS  Google Scholar 

  46. N. Cabbibo and R. Gatto, Phys. Rev. 124 (1961) 1577.

    ADS  Google Scholar 

  47. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B158 (1979) 295.

    ADS  Google Scholar 

  48. M. Caffo et al., Bhabha Scattering in Z Physics at LEP 1, CERN 89–08, eds. G. Altarelli, R. Kleiss and C. Verzegnassi (Geneva, 1989) p. 171.

    Google Scholar 

  49. M. Cacciari, A. Deandrea, G. Montagna and O. Nicrosini, Europhys. Lett. 17 (1992) 123.

    ADS  Google Scholar 

  50. T.H. Chang, K.J.F. Gaemers and W.L. van Neerven, Nuci. Phys. B202 (1982) 407.

    ADS  Google Scholar 

  51. M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379.

    ADS  Google Scholar 

  52. K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, Phys. Lett. B351 (1995) 331 and

    ADS  Google Scholar 

  53. K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, Phys. Rev. Lett. 75 (1995) 3820.

    Google Scholar 

  54. K.G. Chetyrkin, J.H. Kühn and A. Kwiatkowski, Phys. Rept. 277 (1996) 189 and

    ADS  Google Scholar 

  55. K.G. Chetyrkin, J.H. Kühn and A. Kwiatkowski, QCD Corrections to the e+e- Cross Section and the Z Boson Decay Rate in Reports of the Working Group on Precision Calculations for the Z Resonance, CERN-95-03, eds. D. Bardin, W. Hollik and G. Passarino (Geneva, 1995) p. 175.

    Google Scholar 

  56. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Phys. Rev. D10 (1974) 1145.

    ADS  Google Scholar 

  57. J.C. Collins, Renormalization, (Cambridge University Press, Cambridge, 1984).

    MATH  Google Scholar 

  58. M. Consoli, W. Hollik and F. Jegerlehner, Phys. Lett. B227 (1989) 167.

    ADS  Google Scholar 

  59. A. Denner and T. Sack, Nucl. Phys. B347 (1990) 203.

    ADS  Google Scholar 

  60. A. Denner and T. Sack, Z. Phys. C46 (1990) 653.

    ADS  Google Scholar 

  61. A. Denner, Fortschr. Phys. 41 (1993) 307.

    Google Scholar 

  62. A. Denner, W. Hollik and B. Lampe, Z. Phys. C60 (1993) 93.

    Google Scholar 

  63. A. Denner, S. Dittmaier and G. Weiglein, Nucl. Phys. B440 (1995) 95.

    ADS  Google Scholar 

  64. A. Denner and S. Dittmaier, Phys. Rev. D54 (1996) 4499.

    ADS  Google Scholar 

  65. G. Degrassi, P. Gambino and A. Vicini, Phys. Lett. B383 (1996) 219.

    ADS  Google Scholar 

  66. G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B394 (1997) 188.

    ADS  Google Scholar 

  67. G. Degrassi, P. Gambino, M. Passera and A. Sirlin, Phys. Lett. B418 (1998) 209.

    ADS  Google Scholar 

  68. G. Degrassi and P. Gambino, Nucl. Phys. B567 (2000) 3.

    Google Scholar 

  69. A. Dernier, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B587 (2000) 67.

    ADS  Google Scholar 

  70. S. Dittmaier, Phys. Lett. B409 (1997) 509.

    ADS  Google Scholar 

  71. A. Djouadi and C. Verzegnassi, Phys. Rev. D20 (1979) 167.

    Google Scholar 

  72. A. Djouadi, Nuovo Cimento A100 (1988) 357.

    ADS  Google Scholar 

  73. A. Djouadi and P. Gambino, Phys. Rev. D49 (1994) 3499.

    ADS  Google Scholar 

  74. A. Djouadi, M. Spira and P.M. Zerwas, Z. Phys. C70 (1996) 427.

    Google Scholar 

  75. F.J. Dyson, Phys. Rev. 75 (1949) 486 and 1736.

    MATH  ADS  MathSciNet  Google Scholar 

  76. M.B. Einhorn and J. Wudka, Phys. Rev. D39 (1989) 2758.

    ADS  Google Scholar 

  77. S. Eidelman and F. Jegerlehner, Z. Phys. C67 (1995) 585.

    ADS  Google Scholar 

  78. F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321.

    ADS  MathSciNet  Google Scholar 

  79. S. Fanchiotti, B.A. Kniehl and A. Sirlin, Phys. Rev. D48 (1993) 307.

    ADS  Google Scholar 

  80. J. Fleischer and F. Jegerlehner, Phys. Rev. D23 (1981) 2001.

    ADS  Google Scholar 

  81. J. Fleischer, F. Jegerlehner and O.V. Tarasov, Phys. Lett. B319 (1993) 249 and

    ADS  Google Scholar 

  82. J. Fleischer, F. Jegerlehner and O.V. Tarasov, Phys. Rev. D51 (1995) 3820.

    ADS  Google Scholar 

  83. J. Fleischer, F. Jegerlehner, M. Tentyukov and O. Veretin, Phys. Lett. B459 (1999) 625.

    ADS  Google Scholar 

  84. E.S. Fradkin and I.V. Tyutin, Revista del Nuovo Cim. 4 (1974) 1.

    ADS  MathSciNet  Google Scholar 

  85. A. Freitas, W. Hollik, W. Walter and G. Weiglein, Phys. Lett. B495 (2000) 338.

    ADS  Google Scholar 

  86. P. Gambino, P.A. Grassi and F. Madricardo, Phys. Lett. B454 (1999) 98.

    ADS  Google Scholar 

  87. P. Gambino and P.A. Grassi, Phys. Rev. D62 (2000) 076002.

    ADS  Google Scholar 

  88. W. Gilbert, Phys. Rev. Lett. 12 (1964) 713.

    ADS  MathSciNet  Google Scholar 

  89. S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.

    ADS  Google Scholar 

  90. J. Goldstone, Nuovo Cimento 19 (1961) 154.

    MATH  MathSciNet  Google Scholar 

  91. J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127 (1962) 965.

    MATH  ADS  MathSciNet  Google Scholar 

  92. G.J. Gounaris, R. Kögerler and H. Neufeld, Phys. Rev. D34 (1986) 3257.

    ADS  Google Scholar 

  93. M. Göckeler, H. Kastrup, T. Neuhaus and F. Zimmermann, Nucl. Phys. 404 (1993) 517.

    ADS  Google Scholar 

  94. M. Grünewald et al., Four Fermion Production in Electron Positron Collisions, report of the four-fermion working group of the LEP2 Monte Carlo workshop, (CERN, Geneva, 2000), hep-ph/0005309.

    Google Scholar 

  95. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Phys. Rev. Lett. 13 (1964) 585.

    ADS  Google Scholar 

  96. A. Gurtu, plenary talk given at the XXXth International Conference on High Energy Physics, July 27-August 2, 2000, Osaka, Japan.

    Google Scholar 

  97. A. Hasenfratz, T. Neuhaus, K. Jansen, H. Yoneyama and C.B. Lang, Phys. Lett. B199 (1987) 531.

    ADS  Google Scholar 

  98. F. Halzen and B.A. Kniehl, Nucl. Phys. B353 (1991) 567.

    ADS  Google Scholar 

  99. R. Harlander, T. Seidensticker and M. Steinhauser, Phys. Lett. B426 (1998) 125.

    ADS  Google Scholar 

  100. W. Heisenberg, Z. Physik 49 (1928) 619.

    ADS  Google Scholar 

  101. RW. Higgs, Phys. Lett. 12 (1964) 132,

    ADS  Google Scholar 

  102. RW. Higgs, Phys. Rev. Lett. 13 (1964) 508, and

    ADS  MathSciNet  Google Scholar 

  103. RW. Higgs, Phys. Rev. 145 (1966) 1156.

    ADS  MathSciNet  Google Scholar 

  104. W. Hollik and G. Duckeck, Electroweak Precision Tests at LEP, (Springer, Berlin, etc., 2000).

    Google Scholar 

  105. W. Hollik, private communication.

    Google Scholar 

  106. P. Igo-Kemenes, plenary talk given at the XXXth International Conference on High Energy Physics, July 27-August 2, 2000, Osaka, Japan.

    Google Scholar 

  107. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 64 (1980) 1008.

    ADS  Google Scholar 

  108. R. Jackiw and S. Weinberg, Phys. Rev. D5 (1972) 2396.

    ADS  Google Scholar 

  109. S. Jadach et al., Phys. Lett. B417 (1998) 326,

    ADS  Google Scholar 

  110. S. Jadach et al., Phys. Rev. D61 (2000) 113010 and hep-ph/0007012.

    ADS  Google Scholar 

  111. F. Jegerlehner, Z. Phys. C32 (1986) 425,

    ADS  Google Scholar 

  112. F. Jegerlehner, E:Z. Phys. C38 (1988) 519.

    ADS  Google Scholar 

  113. F. Jegerlehner, Testing the Standard Model in Renormalizing the Standard Model, eds. M. Cvetic and P. Langacker (Singapore, etc., 1991) p. 476.

    Google Scholar 

  114. G. Jona-Lasinio, Nuovo Cimento 34 (1964) 1790.

    Google Scholar 

  115. T. Kinoshita and A. Sirlin, Phys. Rev. 113 (1959) 1652.

    ADS  Google Scholar 

  116. T.W.B. Kibble, Phys. Rev. 155 (1967) 1554.

    ADS  Google Scholar 

  117. B.A. Kniehl, J.H. Kühn and R.G. Stuart, Phys. Lett. B214 (1988) 621.

    ADS  Google Scholar 

  118. B.A. Kniehl, Nucl. Phys. B347 (1990) 86.

    ADS  Google Scholar 

  119. B.A. Kniehl and A. Sirlin, Nucl. Phys. B371 (1992) 141 and

    ADS  Google Scholar 

  120. B.A. Kniehl and A. Sirlin, Phys. Rev. D47 (1993) 883.

    ADS  Google Scholar 

  121. E.A. Kuraev and V.S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466.

    Google Scholar 

  122. Z. Kunszt et al., Determination of the Mass of the W Boson in Physics at LEP2, CERN-96-01, eds. G. Altarelli, T. Sjöstrand and F. Zwirner (Geneva, 1996) p. 141.

    Google Scholar 

  123. B.E. Lautrup, Mat. Fys. Medd. Kon. Dan. Vid.-Sel. Medd. 35 (1967) 29.

    Google Scholar 

  124. S.Y. Lee, Phys. Rev. D6 (1972) 1701 and 1803.

    ADS  Google Scholar 

  125. B.W. Lee, Chiral Dynamics, (Gordon and Breach Science Publishers, New York, 1972).

    Google Scholar 

  126. B.W. Lee, Phys. Rev. D9 (1974) 933.

    ADS  Google Scholar 

  127. B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D16 (1977) 1519.

    ADS  Google Scholar 

  128. C.H. Llewellyn Smith, Phys. Lett. 46B (1973) 233.

    ADS  Google Scholar 

  129. M. Lindner, Z. Phys. C31 (1986) 295.

    ADS  Google Scholar 

  130. M. Lüscher and P. Weisz, Phys. Lett. B212 (1988) 472.

    ADS  Google Scholar 

  131. The LEP Collaborations ALEPH, DELPHI, L3, OPAL, the LEP Elec-troweak Working Group and the SLD Heavy Flavour Group, CERN-PPE/97–154.

    Google Scholar 

  132. Homepage of the LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.

  133. W.J. Marciano, Phys. Rev. D20 (1979) 274.

    ADS  Google Scholar 

  134. W.J. Marciano and D. Wyler, Z. Phys. C3 (1979) 181.

    ADS  Google Scholar 

  135. G. Montagna, O. Nicrosini and F. Piccinini, Riv. del Nuovo Cimento 21 (1998) 1.

    Google Scholar 

  136. N. Nakanashi, Prog. Theor. Phys. 35 (1966) 1111.

    ADS  Google Scholar 

  137. O. Nicrosini and L. Trentadue, Phys. Lett. B196 (1987) 551.

    ADS  Google Scholar 

  138. D.E. Groom et al. (Particle Data Group), Eur. Phys. J. C15 (2000) 1.

    Google Scholar 

  139. T. van Ritbergen and R.G. Stuart, Phys. Rev. Lett. 82 (1999) 488.

    ADS  Google Scholar 

  140. D.A. Ross and M. Veltman, Nucl. Phys. B95 (1975) 135.

    ADS  Google Scholar 

  141. D.A. Ross and J.C. Taylor, Nucl. Phys. B51 (1973) 25.

    Google Scholar 

  142. A. Salam, Weak and Electromagnetic Interactions in Elementary Particle Theory, ed. N. Svartholm (Stockholm, 1968) p. 367.

    Google Scholar 

  143. S. Sakakibara, Phys. Rev. D24 (1981) 1149.

    ADS  Google Scholar 

  144. A. Sirlin, Phys. Rev. D22 (1980) 971;

    ADS  Google Scholar 

  145. W.J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695;

    ADS  Google Scholar 

  146. A. Sirlin and W.J. Marciano, Nucl. Phys. B189 (1981) 442.

    ADS  Google Scholar 

  147. A. Sirlin, Phys. Rev. D29 (1984) 89.

    ADS  Google Scholar 

  148. A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127.

    ADS  Google Scholar 

  149. M. Skrzypek and S. Jadach, Z. Phys. C49 (1991) 577.

    Google Scholar 

  150. W. Thirring, Phil. Mag. 41 (1950) 233.

    MathSciNet  Google Scholar 

  151. G.’t Hooft, Nucl. Phys. B33 (1971) 173 and

    ADS  Google Scholar 

  152. G.’t Hooft, Nucl. Phys. B35 (1971) 167.

    ADS  Google Scholar 

  153. M. Veltman, Acta Phys. Pol. B8 (1977) 475.

    Google Scholar 

  154. S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

    ADS  Google Scholar 

  155. S. Weinberg, Phys. Rev. Lett. 27 (1972) 1688.

    ADS  Google Scholar 

  156. G. Weiglein, Acta Phys. Pol. B29 (1998) 2735.

    ADS  Google Scholar 

  157. Y.-P. Yao and C.-P. Yuan, Phys. Rev. D38 (1988) 2237.

    ADS  Google Scholar 

  158. D.R. Yennie, S.C. Frautschi and H. Suura, Ann. Phys. 13 (1961) 379.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 B. G. Teubner Stuttgart/Leipzig/Wiesbaden

About this chapter

Cite this chapter

Böhm, M., Denner, A., Joos, H. (2001). Gauge theories of the electroweak interaction. In: Gauge Theories of the Strong and Electroweak Interaction. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80160-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80160-9_4

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-80162-3

  • Online ISBN: 978-3-322-80160-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics