Skip to main content

Advanced Nano-biocomposites Based on Starch

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

Starch as a biopolymer directly extracted from nature has received much attention in recent years due to its strong advantages such as low cost, wide availability, renewability, and total compostability without toxic residues. Starch-based materials always display properties that are less satisfactory than those of traditional polymer materials, which can be ascribed to the inherent characteristics of starch. To make such materials to be truly competitive and to widen its applications, the development of starch-based nano-biocomposites could be a promising solution. This chapter provides the fundamental knowledge related to starch-based nano-biocomposites as well as the most recent developments in this area. Various types of nanofillers that have been used with plasticized starch are discussed such as montmorillonite, cellulose nanowhiskers, and starch nanoparticles. The preparation strategies for starch-based nano-biocomposites with these types of nanofillers and the corresponding dispersion state and related properties are also largely discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

BCNW:

Bacterial cellulose nanowhisker

CB:

Carbon black

CEC:

Cationic exchange capacity

CMC:

Carboxymethyl cellulose sodium

CNT:

Carbon nanotube

CNW:

Cellulose nanowhisker

D:

Diameter

d 001 :

Interlayer spacing or d-spacing

DMA:

Dynamic mechanical analysis

DMSO:

Dimethyl sulfoxide

DP:

Degree of polymerization

FTIR:

Fourier transform infrared spectroscopy

G’:

Elastic modulus (rheology)

GO:

Graphite oxide

HA:

Hydroxyapatite

IL:

Ionic liquid

L:

Length

L/D:

Length-to-diameter ratio (i.e., aspect ratio)

LCA:

Life-cycle assessment

LDH:

Layered double hydroxide

MMT:

Montmorillonite

MMT–Na+ :

Sodium montmorillonite

MWCNT:

Multiwall carbon nanotube

O:

Octahedral sheets

OMMT:

Organomodified montmorillonite

OMMT–CS:

Cationic starch–organomodified montmorillonite

PBAT:

Poly(butylene adipate-co-terephthalate)

PBSA:

Poly(butylene succinate-co-adipate)

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PLA:

Poly(lactic acid)/polylactide

PVA:

Poly(vinyl alcohol)

REX:

Reactive extrusion

SEM:

Scanning electron microscopy

SME:

Specific mechanical energy

SNP:

Starch nanoparticles

SSE:

Single-screw extruder

SWCNT:

Single-wall carbon nanotube

T:

Tetrahedral sheets

TEM:

Transmission electron microscopy

T g :

Glass transition temperature

TSE:

Twin-screw extruder

UV:

Ultraviolet

XRD:

X-ray diffraction

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    CAS  Google Scholar 

  • Al E, Güçlü G, Banuİyim T, Emik S, Özgümü S (2008) Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. J Appl Polym Sci 109(1):16–22

    CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Google Scholar 

  • Alvarez VA, Fraga AN, Vázquez A (2004) Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer–sisal fiber biocomposites. J Appl Polym Sci 91(6):4007–4016

    CAS  Google Scholar 

  • Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5(4):1545–1551

    CAS  Google Scholar 

  • Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7(2):531–539

    CAS  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    CAS  Google Scholar 

  • Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931

    CAS  Google Scholar 

  • Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31(1):114–127

    CAS  Google Scholar 

  • Atwell WA, Hood LF, Lineback DR, Varrianomarston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33(3):306–311

    Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    CAS  Google Scholar 

  • Avérous L (2002) Interactions between cellulose and plasticized wheat starch – properties of biodegradable multiphase systems. In: Renard D, Della G, Popineau Y (eds) Plant biopolymer science: food and non-food applications. Royal Society of Chemistry, London, pp 253–259

    Google Scholar 

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. Polym Rev 44(3):231–274

    Google Scholar 

  • Averous L (2007) Cellulose-based biocomposites: comparison of different multiphasic systems. Compos Interfaces 14:787–805

    CAS  Google Scholar 

  • Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122

    CAS  Google Scholar 

  • Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Biorefin 3(3):329–343

    Google Scholar 

  • Avérous LR, Halley PJ (2014) Starch polymers: from the field to industrial products. In: Halley PJ, Avérous LR (eds) Starch polymers: from genetic engineering to green applications. Elsevier, Amsterdam, pp 3–10

    Google Scholar 

  • Avérous L, Fringant C, Moro L (2001) Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 42(15):6565–6572

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Google Scholar 

  • Bagdi K, Müller P, Pukánszky B (2006) Thermoplastic starch/layered silicate composites: structure, interaction, properties. Compos Interfaces 13:1–17

    CAS  Google Scholar 

  • Barron C, Bouchet B, Della Valle G, Gallant DJ, Planchot V (2001) Microscopical study of the destructuring of waxy maize and smooth pea starches by shear and heat at low hydration. J Cereal Sci 33(3):289–300

    CAS  Google Scholar 

  • Baumberger S (2002) Starch-lignin films. In: Thomas QH (ed) Chemical modification, properties, and usage of lignin. Springer, London, pp 1–19

    Google Scholar 

  • Baumberger S, Lapierre C, Monties B (1998a) Utilization of pine kraft lignin in starch composites: impact of structural heterogeneity. J Agric Food Chem 46(6):2234–2240

    CAS  Google Scholar 

  • Baumberger S, Lapierre C, Monties B, Valle GD (1998b) Use of kraft lignin as filler for starch films. Polym Degrad Stab 59(1–3):273–277

    CAS  Google Scholar 

  • Bélard L, Dole P, Avérous L (2009) Study of pseudo-multilayer structures based on starch-polycaprolactone extruded blends. Polym Eng Sci 49(6):1177–1186

    Google Scholar 

  • Bergaya F, Jaber M, Lambert J-F (2012) Clays and clay minerals as layered nanofillers for (bio)polymers. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites (green energy and technology). Springer, London, pp 41–75

    Google Scholar 

  • Bocchini S, Battegazzore D, Frache A (2010) Poly (butylensuccinate co-adipate)-thermoplastic starch nanocomposite blends. Carbohydr Polym 82(3):802–808

    CAS  Google Scholar 

  • Böhm GGA, Nguyen MN (1995) Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures. J Appl Polym Sci 55(7):1041–1050

    Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    CAS  Google Scholar 

  • Bonnet P, Albertini D, Bizot H, Bernard A, Chauvet O (2007) Amylose/SWNT composites: from solution to film – synthesis, characterization and properties. Compos Sci Technol 67(5):817–821

    CAS  Google Scholar 

  • Božanić DK, Djoković V, Bibić N, Sreekumari Nair P, Georges MK, Radhakrishnan T (2009) Biopolymer-protected CdSe nanoparticles. Carbohydr Res 344(17):2383–2387

    Google Scholar 

  • Breuer O, Tchoudakov R, Narkis M, Siegmann A (1997) Segregated structures in carbon black-containing immiscible polymer blends: HIPS/LLDPE systems. J Appl Polym Sci 64(6):1097–1106

    CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Google Scholar 

  • Bulkin BJ, Kwak Y, Dea ICM (1987) Retrogradation kinetics of waxy-corn and potato starches; a rapid, Raman-spectroscopic study. Carbohydr Res 160:95–112

    CAS  Google Scholar 

  • Burros BC, Young LA, Carroad PA (1987) Kinetics of corn meal gelatinization at high temperature and low moisture. J Food Sci 52(5):1372–1376

    Google Scholar 

  • Cai J, Zhang L (2005) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7(1):183–189

    Google Scholar 

  • Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106(2):1431–1437

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008a) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008b) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810

    CAS  Google Scholar 

  • Carvalho AJF, Zambon MD, Curvelo AAS, Gandini A (2003) Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polym Degrad Stab 79(1):133–138

    CAS  Google Scholar 

  • Cases JM, Berend I, Besson G, Francois M, Uriot JP, Thomas F, Poirier JE (1992) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir 8(11):2730–2739

    CAS  Google Scholar 

  • Casey A, Farrell GF, McNamara M, Byrne HJ, Chambers G (2005) Interaction of carbon nanotubes with sugar complexes. Synth Met 153(1–3):357–360

    CAS  Google Scholar 

  • Chairam S, Poolperm C, Somsook E (2009) Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles. Carbohydr Polym 75(4):694–704

    CAS  Google Scholar 

  • Chang PR, Yu J, Ma X (2009) Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol Mater Eng 294(11):762–767

    CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010a) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120(3):736–740

    CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010b) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80(2):421–426

    Google Scholar 

  • Chang PR, Jian R, Zheng P, Yu J, Ma X (2010c) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305

    CAS  Google Scholar 

  • Chatterjee A, Deopura BL (2006) Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci 100(5):3574–3578

    CAS  Google Scholar 

  • Chaudhary DS (2008) Understanding amylose crystallinity in starch-clay nanocomposites. J Polym Sci B Polym Phys 46(10):979–987

    CAS  Google Scholar 

  • Chaudhary AL, Miler M, Torley PJ, Sopade PA, Halley PJ (2008) Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydr Polym 74(4):907–913

    CAS  Google Scholar 

  • Chaudhary D, Liu H, John J, Tadé MO (2011) Morphological investigation into starch bio-nanocomposites via synchrotron radiation and differential scanning calorimetry. J Nanotechnol, Article 924582/1–14

    Google Scholar 

  • Chaudhary DS, Adhikari BP, Kasapis S (2011b) Glass-transition behaviour of plasticized starch biopolymer system – a modified Gordon-Taylor approach. Food Hydrocoll 25(1):114–121

    CAS  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr Polym 61(4):455–463

    CAS  Google Scholar 

  • Chen M, Chen B, Evans JRG (2005) Novel thermoplastic starch-clay nanocomposite foams. Nanotechnology 16(10):2334

    CAS  Google Scholar 

  • Chen P, Yu L, Kealy T, Chen L, Li L (2007) Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydr Polym 68(3):495–501

    CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA (2009a) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49(2):369–378

    CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009b) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76(4):607–615

    CAS  Google Scholar 

  • Chiou B-S, Yee E, Glenn GM, Orts WJ (2005) Rheology of starch-clay nanocomposites. Carbohydr Polym 59(4):467–475

    CAS  Google Scholar 

  • Chiou BS, Yee E, Wood D, Shey J, Glenn G, Orts W (2006) Effects of processing conditions on nanoclay dispersion in starch-clay nanocomposites. Cereal Chem 83(3):300–305

    CAS  Google Scholar 

  • Chiou B-S, Wood D, Yee E, Imam SH, Glenn GM, Orts WJ (2007) Extruded starch-nanoclay nanocomposites: effects of glycerol and nanoclay concentration. Polym Eng Sci 47(11):1898–1904

    CAS  Google Scholar 

  • Chivrac F, Gueguen O, Pollet E, Ahzi S, Makradi A, Averous L (2008a) Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomater 4(6):1707–1714

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Schmutz M, Avérous L (2008b) New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromolecules 9(3):896–900

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Avérous L (2009a) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67(1):1–17

    Google Scholar 

  • Chivrac F, Pollet E, Avérous L (2009b) Shear induced clay organo-modification: application to plasticized starch nano-biocomposites. Polym Adv Technol 21(8):578–583

    Google Scholar 

  • Chivrac F, Angellier-Coussy H, Guillard V, Pollet E, Avérous L (2010a) How does water diffuse in starch/montmorillonite nano-biocomposite materials? Carbohydr Polym 82(1):128–135

    CAS  Google Scholar 

  • Chivrac F, Gueguen O, Pollet E, Avérous L, Ahzi S, Belouettar S (2010b) Micromechanically-based formulation of the cooperative model for the yield behavior of starch-based nano-biocomposites. J Nanosci Nanotechnol 10:2949–2955

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Dole P, Avérous L (2010c) Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79(4):941–947

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Schmutz M, Avérous L (2010d) Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr Polym 80(1):145–153

    CAS  Google Scholar 

  • Chung Y-L, Lai H-M (2010) Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites. Carbohydr Polym 80(2):526–533

    Google Scholar 

  • Chung Y-L, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai H-M (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79(2):391–396

    CAS  Google Scholar 

  • Clearfield A, Berman JR (1981) On the mechanism of ion exchange in zirconium phosphates – XXXIV. Determination of the surface areas of α-Zr(HPO4)2·H2O by surface exchange. J Inorg Nucl Chem 43(9):2141–2142

    CAS  Google Scholar 

  • Clearfield A, Duax WL, Garces JM, Medina AS (1972) On the mechanism of ion exchange in crystalline zirconium phosphates – IV potassium ion exchange of α-zirconium phosphate. J Inorg Nucl Chem 34(1):329–337

    CAS  Google Scholar 

  • Crosby AJ, Lee JY (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47(2):217–229

    CAS  Google Scholar 

  • Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10(14):1091–1093

    CAS  Google Scholar 

  • Curvelo AAS, de Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr Polym 45(2):183–188

    CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That M-T, Vazquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73(1):55–63

    CAS  Google Scholar 

  • Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63(3):417–424

    Google Scholar 

  • Dai JC, Huang JT (1999) Surface modification of clays and clay–rubber composite. Appl Clay Sci 15(1–2):51–65

    CAS  Google Scholar 

  • Dai H, Chang P, Geng F, Yu J, Ma X (2009a) Preparation and properties of thermoplastic starch/montmorillonite nanocomposite using N-(2-hydroxyethyl)formamide as a new additive. J Polym Environ 17(4):225–232

    CAS  Google Scholar 

  • Dai H, Chang PR, Peng F, Yu J, Ma X (2009b) N-(2-hydroxyethyl)formamide as a new plasticizer for thermoplastic starch. J Polym Res 16(5):529–535

    CAS  Google Scholar 

  • Dai H, Chang PR, Geng F, Yu J, Ma X (2010a) Preparation and properties of starch-based film using N,N-bis(2-hydroxyethyl)formamide as a new plasticizer. Carbohydr Polym 79(2):306–311

    CAS  Google Scholar 

  • Dai H, Chang PR, Yu J, Geng F, Ma X (2010b) N-(2-hydroxypropyl)formamide and N-(2-hydroxyethyl)-N-methylformamide as two new plasticizers for thermoplastic starch. Carbohydr Polym 80(1):139–144

    CAS  Google Scholar 

  • de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohydr Polym 45(2):189–194

    Google Scholar 

  • Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67(3–4):413–421

    CAS  Google Scholar 

  • Dean KM, Do MD, Petinakis E, Yu L (2008) Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Compos Sci Technol 68(6):1453–1462

    CAS  Google Scholar 

  • Dean KM, Petinakis E, Goodall L, Miller T, Yu L, Wright N (2011) Nanostabilization of thermally processed high amylose hydroxylpropylated starch films. Carbohydr Polym 86(2):652–658

    CAS  Google Scholar 

  • Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23):9513–9522

    CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    CAS  Google Scholar 

  • Donnet J-B, Bansal RC, Wang M-J (1993) Carbon black: science and technology, 2nd edn. Marcel Decker, New York (revised and expanded)

    Google Scholar 

  • Donovan JW (1979) Phase transitions of the starch-water system. Biopolymers 18(2):263–275

    CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86(6):484–494

    CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092

    CAS  Google Scholar 

  • Duquesne E, Moins S, Alexandre M, Dubois P (2007) How can nanohybrids enhance polyester/sepiolite nanocomposite properties? Macromol Chem Phys 208(23):2542–2550

    CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    CAS  Google Scholar 

  • Enrione J, Osorio F, Pedreschi F, Hill S (2010) Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technol 3(6):791–796

    CAS  Google Scholar 

  • Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    CAS  Google Scholar 

  • Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carbohydr Polym 83(3):1226–1231

    Google Scholar 

  • Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87(3):1989–1993

    Google Scholar 

  • Fischer HR, Gielgens LH, Koster TPM (1999) Nanocomposites from polymers and layered minerals. Acta Polym 50(4):122–126

    CAS  Google Scholar 

  • Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42(25):09929–09940

    CAS  Google Scholar 

  • Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr Polym 34(4):275–282

    CAS  Google Scholar 

  • Fringant C, Desbrières J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymer 37(13):2663–2673

    CAS  Google Scholar 

  • Fringant C, Rinaudo M, Foray MF, Bardet M (1998) Preparation of mixed esters of starch or use of an external plasticizer: two different ways to change the properties of starch acetate films. Carbohydr Polym 35(1–2):97–106

    Google Scholar 

  • Frost K, Barthes J, Kaminski D, Lascaris E, Niere J, Shanks R (2011) Thermoplastic starch-silica-polyvinyl alcohol composites by reactive extrusion. Carbohydr Polym 84(1):343–350

    CAS  Google Scholar 

  • Fu C, Meng L, Lu Q, Zhang X, Gao C (2007) Large-scale production of homogeneous helical amylose/SWNTs complexes with good biocompatibility. Macromol Rapid Commun 28(22):2180–2184

    CAS  Google Scholar 

  • Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59(1–3):293–296

    CAS  Google Scholar 

  • Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32(3–4):177–191

    CAS  Google Scholar 

  • Gao W, Dong H, Hou H, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr Polym 88(1):321–328

    CAS  Google Scholar 

  • García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294(3):169–177

    Google Scholar 

  • García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84(1):203–210

    Google Scholar 

  • Gaudin S, Lourdin D, Le Botlan D, Ilari JL, Colonna P (1999) Plasticisation and mobility in starch-sorbitol films. J Cereal Sci 29(3):273–284

    CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    CAS  Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    CAS  Google Scholar 

  • Godovsky DY (2000) Device applications of polymer-nanocomposites, Biopolymers – PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin, pp 163–205

    Google Scholar 

  • Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842

    Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16(3):181–185

    CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29(4):1098–1104

    CAS  Google Scholar 

  • Gudmundsson M (1994) Retrogradation of starch and the role of its components. Thermochim Acta 246(2):329–341

    CAS  Google Scholar 

  • Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    CAS  Google Scholar 

  • Hassan Nejad M, Ganster J, Bohn A, Volkert B, Lehmann A (2011) Nanocomposites of starch mixed esters and MMT: improved strength, stiffness, and toughness for starch propionate acetate laurate. Carbohydr Polym 84(1):90–95

    CAS  Google Scholar 

  • He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87(4):2706–2711

    CAS  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115(8):1125–1131

    CAS  Google Scholar 

  • Hendricks SB (1942) Lattice structure of clay minerals and some properties of clays. J Geol 50(3):276–290

    CAS  Google Scholar 

  • Hofmeister W, Platen HV (1992) Crystal chemistry and atomic order in brucite-related double-layer structures. Crystallogr Rev 3(1):3–26

    Google Scholar 

  • Huang M, Yu J (2006) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99(1):170–176

    CAS  Google Scholar 

  • Huang M-F, Yu J-G, Ma X-F (2004) Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45(20):7017–7023

    CAS  Google Scholar 

  • Huang M-F, Yu J-G, Ma X-F, Jin P (2005a) High performance biodegradable thermoplastic starch-EMMT nanoplastics. Polymer 46(9):3157–3162

    CAS  Google Scholar 

  • Huang MF, Yu JG, Ma XF (2005b) Preparation of the thermoplastic starch/montmorillonite nanocomposites by melt-intercalation. Chin Chem Lett 16(4):561–564

    CAS  Google Scholar 

  • Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr Polym 63(3):393–399

    CAS  Google Scholar 

  • Ibrahim SM (2011) Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J Appl Polym Sci 119(2):685–692

    CAS  Google Scholar 

  • Ikeo Y, Aoki K, Kishi H, Matsuda S, Murakami A (2006) Nano clay reinforced biodegradable plastics of PCL starch blends. Polym Adv Technol 17(11–12):940–944

    CAS  Google Scholar 

  • Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27(8):1205–1221

    CAS  Google Scholar 

  • Imberty A, Chanzy H, Pérez S, Bulèon A, Tran V (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201(2):365–378

    CAS  Google Scholar 

  • Jane J-l (2009) Structural features of starch granules II. In: James B, Roy W (eds) Starch, 3rd edn. Academic, San Diego, pp 193–236

    Google Scholar 

  • Jarowenko W (1986) Acetylated starch and miscellaneous organic esters. In: Wurzburg OB (ed) Modified starches: properties and uses. CRC Press, Boca Raton, pp 55–77

    Google Scholar 

  • Jiang L, Shen X-P, Wu J-L, Shen K-C (2010) Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci 118(1):275–279

    CAS  Google Scholar 

  • Jozja N, Baillif P, Touray J-C, Pons C-H, Muller F, Burgevin C (2003) Impacts « multi-échelle » d’un échange (Mg, Ca)–Pb et ses conséquences sur l’augmentation de la perméabilité d’une bentonite. Compt Rendus Geosci 335(9):729–736

    CAS  Google Scholar 

  • Kalambur SB, Rizvi SS (2004) Starch-based nanocomposites by reactive extrusion processing. Polym Int 53(10):1413–1416

    CAS  Google Scholar 

  • Kalambur S, Rizvi SSH (2005) Biodegradable and functionally superior starch-polyester nanocomposites from reactive extrusion. J Appl Polym Sci 96(4):1072–1082

    CAS  Google Scholar 

  • Kalambur S, Rizvi SSH (2006a) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22(1):39–58

    CAS  Google Scholar 

  • Kalambur S, Rizvi SSH (2006b) Rheological behavior of starch-polycaprolactone (PCL) nanocomposite melts synthesized by reactive extrusion. Polym Eng Sci 46(5):650–658

    CAS  Google Scholar 

  • Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67(2):155–163

    CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345

    CAS  Google Scholar 

  • Ke G (2010) A novel strategy to functionalize carbon nanotubes with cellulose acetate using triazines as intermediated functional groups. Carbohydr Polym 79(3):775–782

    CAS  Google Scholar 

  • Ke Y, Lü J, Yi X, Zhao J, Qi Z (2000) The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J Appl Polym Sci 78(4):808–815

    Google Scholar 

  • Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15):3797–3809

    CAS  Google Scholar 

  • Kim O-K, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ (2003) Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc 125(15):4426–4427

    CAS  Google Scholar 

  • Kirby AR, Clark SA, Parker R, Smith AC (1993) The deformation and failure behaviour of wheat starch plasticized with water and polyols. J Mater Sci 28(21):5937–5942

    CAS  Google Scholar 

  • Kis A, Zettl A (2008) Nanomechanics of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 366(1870):1591–1611

    CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    CAS  Google Scholar 

  • Kluüppel M, Schroüder A, Heinrich G (2007) Carbon black. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 539–550

    Google Scholar 

  • Kraus G (1965) Reinforcement of elastomers. Interscience Publishers, New York

    Google Scholar 

  • Kumar AP, Depan D, Singh Tomer N, Singh RP (2009) Nanoscale particles for polymer degradation and stabilization – trends and future perspectives. Prog Polym Sci 34(6):479–515

    CAS  Google Scholar 

  • Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171

    CAS  Google Scholar 

  • Lafargue D, Pontoire B, Buléon A, Doublier JL, Lourdin D (2007) Structure and mechanical properties of hydroxypropylated starch films. Biomacromolecules 8(12):3950–3958

    CAS  Google Scholar 

  • Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22(1):43–51

    CAS  Google Scholar 

  • Lagaly G (1999) Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl Clay Sci 15(1–2):1–9

    CAS  Google Scholar 

  • Lahiff E, Lynam C, Gilmartin N, O’Kennedy R, Diamond D (2010) The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398(4):1575–1589

    CAS  Google Scholar 

  • Lai LS, Kokini JL (1991) Physicochemical changes and rheological properties of starch during extrusion. Biotechnol Prog 7(3):251–266

    CAS  Google Scholar 

  • Lam C-w, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217

    CAS  Google Scholar 

  • Lawton JW, Shogren RL, Tiefenbacher KF (2004) Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind Crop Prod 19(1):41–48

    CAS  Google Scholar 

  • Le Corre D b, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153

    Google Scholar 

  • Lee S-Y, Hanna MA (2008) Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite Na+ nanocomposite foams. J Appl Polym Sci 110(4):2337–2344

    CAS  Google Scholar 

  • Lee SY, Hanna MA (2009) Tapioca starch-poly(lactic acid)-Cloisite 30B nanocomposite foams. Polym Compos 30(5):665–672

    CAS  Google Scholar 

  • Lee SH, Cho E, Jeon SH, Youn JR (2007a) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45(14):2810–2822

    CAS  Google Scholar 

  • Lee SY, Xu YX, Hanna MA (2007b) Tapioca starch-poly (lactic acid)-based nanocomposite foams as affected by type of nanoclay. Int Polym Process 22(5):429–435

    CAS  Google Scholar 

  • Lee SY, Chen H, Hanna MA (2008a) Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Ind Crop Prod 28(1):95–106

    CAS  Google Scholar 

  • Lee SY, Hanna MA, Jones DD (2008b) An adaptive neuro-fuzzy inference system for modeling mechanical properties of tapioca starch-poly(lactic acid) nanocomposite foams. Starch-Starke 60(3–4):159–164

    CAS  Google Scholar 

  • Lelievre J (1974) Starch gelatinization. J Appl Polym Sci 18(1):293–296

    CAS  Google Scholar 

  • Leroux F, Besse J-P (2001) Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem Mater 13(10):3507–3515

    CAS  Google Scholar 

  • Li JH, Ren CL, Liu X, De Hu Z, Xue DS (2007) “Green” synthesis of starch capped CdSe nanoparticles at room temperature. Mater Sci Eng A 458(1–2):319–322

    Google Scholar 

  • Li M, Liu P, Zou W, Yu L, Xie F, Pu H, Liu H, Chen L (2011a) Extrusion processing and characterization of edible starch films with different amylose contents. J Food Eng 106(1):95–101

    CAS  Google Scholar 

  • Li R, Liu C, Ma J (2011b) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84(1):631–637

    CAS  Google Scholar 

  • Li M, Hasjim J, Xie F, Halley PJ, Gilbert RG (2014) Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch-Stärke (in press). 10.1002/star.201300201

    Google Scholar 

  • Liao H-T, Wu C-S (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108(4):2280–2289

    CAS  Google Scholar 

  • Lii C-y, Stobinski L, Tomasik P, Liao C-d (2003) Single-walled carbon nanotube – potato amylose complex. Carbohydr Polym 51(1):93–98

    CAS  Google Scholar 

  • Lilichenko N, Maksimov R, Zicans J, Merijs Meri R, Plume E (2008) A biodegradable polymer nanocomposite: mechanical and barrier properties. Mech Compos Mater 44(1):45–56

    CAS  Google Scholar 

  • Lin C-A, Tung C-C (2009) The preparation of glycerol pseudo-thermoplastic starch (GTPS) via gelatinization and plasticization. Polym Plast Technol Eng 48(5):509–515

    CAS  Google Scholar 

  • Liu Q, Thompson DB (1998) Effects of moisture content and different gelatinization heating temperatures on retrogradation of waxy-type maize starches. Carbohydr Res 314(3–4):221–235

    CAS  Google Scholar 

  • Liu H, Xie F, Chen L, Yu L, Dean K, Bateman S (2005) Thermal behaviour of high amylose cornstarch studied by DSC. Int J Food Eng 1(1), Article 3/1–6

    Google Scholar 

  • Liu H, Yu L, Xie F, Chen L (2006) Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr Polym 65(3):357–363

    CAS  Google Scholar 

  • Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93(1):260–262

    CAS  Google Scholar 

  • Liu H, Xie F, Yu L, Chen L, Li L (2009a) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368

    CAS  Google Scholar 

  • Liu P, Yu L, Liu H, Chen L, Li L (2009b) Glass transition temperature of starch studied by a high-speed DSC. Carbohydr Polym 77(2):250–253

    CAS  Google Scholar 

  • Liu P, Yu L, Wang X, Li D, Chen L, Li X (2010a) Glass transition temperature of starches with different amylose/amylopectin ratios. J Cereal Sci 51(3):388–391

    CAS  Google Scholar 

  • Liu W-C, Halley PJ, Gilbert RG (2010b) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43(6):2855–2864

    CAS  Google Scholar 

  • Liu D, Chang PR, Deng S, Wang C, Zhang B, Tian Y, Huang S, Yao J, Ma X (2011a) Fabrication and characterization of zirconium hydroxide-carboxymethyl cellulose sodium/plasticized Trichosanthes Kirilowii starch nanocomposites. Carbohydr Polym 86(4):1699–1704

    CAS  Google Scholar 

  • Liu H, Chaudhary D, Ingram G, John J (2011b) Interactions of hydrophilic plasticizer molecules with amorphous starch biopolymer – an investigation into the glass transition and the water activity behavior. J Polym Sci B Polym Phys 49(14):1041–1049

    CAS  Google Scholar 

  • Liu H, Chaudhary D, Yusa S-i, Tadé MO (2011c) Glycerol/starch/Na+-montmorillonite nanocomposites: a XRD, FTIR, DSC and 1H NMR study. Carbohydr Polym 83(4):1591–1597

    CAS  Google Scholar 

  • Liu P, Xie F, Li M, Liu X, Yu L, Halley PJ, Chen L (2011d) Phase transitions of maize starches with different amylose contents in glycerol-water systems. Carbohydr Polym 85(1):180–187

    CAS  Google Scholar 

  • Liu Z, Zhao L, Chen M, Yu J (2011e) Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites. Carbohydr Polym 83(2):447–451

    CAS  Google Scholar 

  • Lourdin D, Coignard L, Bizot H, Colonna P (1997) Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer 38(21):5401–5406

    CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites – reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204

    CAS  Google Scholar 

  • Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interf Sci 82(1–3):43–92

    CAS  Google Scholar 

  • Luo W, Zhang W a, Chen P, Fang Y e (2005) Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via γ-ray irradiation technique. J Appl Polym Sci 96(4):1341–1346

    CAS  Google Scholar 

  • Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditions. Mater Sci Eng A 425(1–2):70–77

    Google Scholar 

  • Ma X, Yu J (2004a) Formamide as the plasticizer for thermoplastic starch. J Appl Polym Sci 93(4):1769–1773

    CAS  Google Scholar 

  • Ma X, Yu J (2004b) The plasticizers containing amide groups for thermoplastic starch. Carbohydr Polym 57(2):197–203

    CAS  Google Scholar 

  • Ma X, Yu J (2004c) The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch-Starke 56(11):545–551

    CAS  Google Scholar 

  • Ma X, Yu J, Feng J (2004) Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym Int 53(11):1780–1785

    CAS  Google Scholar 

  • Ma XF, Yu JG, Ma YB (2005) Urea and formamide as a mixed plasticizer for thermoplastic wheat flour. Carbohydr Polym 60:111–116

    CAS  Google Scholar 

  • Ma XF, Yu JG, Wan JJ (2006) Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr Polym 64(2):267–273

    CAS  Google Scholar 

  • Ma X, Yu J, He K, Wang N (2007a) The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromol Mater Eng 292(4):503–510

    CAS  Google Scholar 

  • Ma X, Yu J, Wang N (2007b) Production of thermoplastic starch/MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol Mater Eng 292(6):723–728

    CAS  Google Scholar 

  • Ma X, Chang PR, Yu J, Lu P (2008a) Characterizations of glycerol plasticized-starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydr Polym 74(4):895–900

    CAS  Google Scholar 

  • Ma X, Chang PR, Yu J, Lu P (2008b) Electrically conductive carbon black (CB)/glycerol plasticized-starch (GPS) composites prepared by microwave radiation. Starch-Starke 60(7):373–375

    CAS  Google Scholar 

  • Ma X, Jian R, Chang PR, Yu J (2008c) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9(11):3314–3320

    CAS  Google Scholar 

  • Ma X, Yu J, Wang N (2008d) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68(1):268–273

    CAS  Google Scholar 

  • Ma X, Chang PR, Yang J, Yu J (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydr Polym 75(3):472–478

    CAS  Google Scholar 

  • Magalhães NF, Andrade CT (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75(4):712–718

    Google Scholar 

  • Magalhães NF, Andrade CT (2010) Calcium bentonite as reinforcing nanofiller for thermoplastic starch. J Braz Chem Soc 21:202–208

    Google Scholar 

  • Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563

    CAS  Google Scholar 

  • Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79(3):547–554

    CAS  Google Scholar 

  • Maksimov RD, Lagzdins A, Lilichenko N, Plume E (2009) Mechanical properties and water vapor permeability of starch/montmorillonite nanocomposites. Polym Eng Sci 49(12):2421–2429

    CAS  Google Scholar 

  • Mallapragada SK, Narasimhan B (2006) Handbook of biodegradable polymeric materials and applications: volume 1. materials. American Scientific Publishers, Stevenson Rance, California, USA

    Google Scholar 

  • Martin O, Averous L, Della Valle G (2003) In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydr Polym 53(2):169–182

    CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002a) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3(5):1101–1108

    CAS  Google Scholar 

  • Mathew AP, Dufresne A (2002b) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3(3):609–617

    CAS  Google Scholar 

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109(6):4065–4074

    CAS  Google Scholar 

  • Matsui KN, Larotonda FDS, Paes SS, Luiz DB, Pires ATN, Laurindo JB (2004) Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr Polym 55(3):237–243

    CAS  Google Scholar 

  • Mbey JA, Hoppe S, Thomas F (2012) Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr Polym 88(1):213–222

    CAS  Google Scholar 

  • Mbougueng PD, Tenin D, Scher J, Tchiégang C (2012) Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J Food Eng 108(2):320–326

    CAS  Google Scholar 

  • McGlashan SA, Halley PJ (2003) Preparation and characterisation of biodegradable starch-based nanocomposite materials. Polym Int 52(11):1767–1773

    CAS  Google Scholar 

  • Mering J (1946) On the hydration of montmorillonite. Trans Faraday Soc 42:B205–B219

    Google Scholar 

  • Meskinfam M, Sadjadi MAS, Jazdarreh H, Zare K (2011) Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol 7(3):455–459

    CAS  Google Scholar 

  • Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448

    CAS  Google Scholar 

  • Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17(6):1610–1616

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and their biocomposites. CRC Press, Boca Raton

    Google Scholar 

  • Mondragón M, Mancilla JE, Rodríguez-González FJ (2008) Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym Eng Sci 48(7):1261–1267

    Google Scholar 

  • Mondragón M, Hernández EM, Rivera-Armenta JL, Rodríguez-González FJ (2009) Injection molded thermoplastic starch/natural rubber/clay nanocomposites: morphology and mechanical properties. Carbohydr Polym 77(1):80–86

    Google Scholar 

  • Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199

    CAS  Google Scholar 

  • Müller CMO, Laurindo JB, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crop Prod 33(3):605–610

    Google Scholar 

  • Murugan R, Ramakrishna S (2004) Crystallographic study of hydroxyapatite bioceramics derived from various sources. Cryst Growth Des 5(1):111–112

    Google Scholar 

  • Namazi H, Mosadegh M, Dadkhah A (2009) New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: as a comparative study. Carbohydr Polym 75(4):665–669

    CAS  Google Scholar 

  • Nashed G, Rutgers RPG, Sopade PA (2003) The plasticisation effect of glycerol and water on the gelatinisation of wheat starch. Starch-Starke 55(3–4):131–137

    CAS  Google Scholar 

  • Nayak SK (2010) Biodegradable PBAT/starch nanocomposites. Polym Plast Technol Eng 49(14):1406–1418

    Google Scholar 

  • Nejad MH, Ganster J, Volkert B (2010) Starch esters with improved mechanical properties through melt compounding with nanoclays. J Appl Polym Sci 118(1):503–510

    Google Scholar 

  • Nicole G (2007) Carbon nanotubes – becoming clean. Mater Today 10(1–2):28–35

    Google Scholar 

  • Norman RH (1970) Conductive rubbers and plastics: their production, application and test methods. Elsevier, Amsterdam

    Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    CAS  Google Scholar 

  • Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19):6527–6530

    CAS  Google Scholar 

  • Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch-Starke 57(1):8–15

    CAS  Google Scholar 

  • Park H-M, Li X, Jin C-Z, Park C-Y, Cho W-J, Ha C-S (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287(8):553–558

    CAS  Google Scholar 

  • Park H-M, Lee W-K, Park C-Y, Cho W-J, Ha C-S (2003) Environmentally friendly polymer hybrids. Part I: mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915

    CAS  Google Scholar 

  • Park H-M, Kim G-H, Ha C-S (2007) Preparation and characterization of biodegradable aliphatic polyester/thermoplastic starch/organoclay ternary hybrid nanocomposites. Compos Interfaces 14:427–438

    CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    CAS  Google Scholar 

  • Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(1–2):153–166

    CAS  Google Scholar 

  • Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6(19):57–63

    CAS  Google Scholar 

  • Payne AR (1963) Dynamic properties of heat-treated butyl vulcanizates. J Appl Polym Sci 7(3):873–885

    CAS  Google Scholar 

  • Payne AR (1964) Strainwork dependence of filler-loaded vulcanizates. J Appl Polym Sci 8(6):2661–2686

    Google Scholar 

  • Payne AR (1965a) Dynamic properties of natural rubber containing heat-treated carbon blacks. J Appl Polym Sci 9(10):3245–3254

    CAS  Google Scholar 

  • Payne AR (1965b) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 9(6):2273–2284

    CAS  Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke 62(8):389–420

    Google Scholar 

  • Pérez CJ, Alvarez VA, Mondragón I, Vázquez A (2007) Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polym Int 56(5):686–693

    Google Scholar 

  • Perez C, Vázquez A, Alvarez V (2008) Isothermal crystallization of layered silicate/starch-polycaprolactone blend nanocomposites. J Therm Anal Calorim 91(3):749–757

    CAS  Google Scholar 

  • Pérez CJ, Alvarez VA, Mondragón I, Vázquez A (2008a) Water uptake behavior of layered silicate/starch-polycaprolactone blend nanocomposites. Polym Int 57(2):247–253

    Google Scholar 

  • Pérez CJ, Alvarez VA, Vázquez A (2008b) Creep behaviour of layered silicate/starch-polycaprolactone blends nanocomposites. Mater Sci Eng A 480(1–2):259–265

    Google Scholar 

  • Pérez S, Baldwin PM, Gallant DJ (2009) Structural features of starch granules I. In: James B, Roy W (eds) Starch, 3rd edn. Academic, San Diego, pp 149–192

    Google Scholar 

  • Pinnavaia TJ, Beall GW (2000) Polymer-clay nanocomposites, Wiley series in polymer science. Wiley, Chichester

    Google Scholar 

  • Powell DH, Tongkhao K, Kennedy SJ, Slade PG (1997) Interlayer water structure in Na- and Li-montmorillonite clays. Phys B Condens Matter 241–243:387–389

    Google Scholar 

  • Powell DH, Fischer HE, Skipper NT (1998) The structure of interlayer water in Li−montmorillonite studied by neutron diffraction with isotopic substitution. J Phys Chem B 102(52):10899–10905

    CAS  Google Scholar 

  • Pushpadass HA, Hanna MA (2009) Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind Eng Chem Res 48(18):8457–8463

    CAS  Google Scholar 

  • Pushpadass HA, Kumar A, Jackson DS, Wehling RL, Dumais JJ, Hanna MA (2009) Macromolecular changes in extruded starch-films plasticized with glycerol, water and stearic acid. Starch-Starke 61(5):256–266

    CAS  Google Scholar 

  • Putaux J-L, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5):1198–1202

    CAS  Google Scholar 

  • Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237

    CAS  Google Scholar 

  • Qiao X, Jiang W, Sun K (2005) Reinforced thermoplastic acetylated starch with layered silicates. Starch-Starke 57(12):581–586

    CAS  Google Scholar 

  • Qiao X, Tang Z, Sun K (2011) Plasticization of corn starch by polyol mixtures. Carbohydr Polym 83(2):659–664

    CAS  Google Scholar 

  • Radhakrishnan T, Georges MK, Nair PS, Luyt AS, Djokovi V (2007) Study of sago starch-CdS nanocomposite films: fabrication, structure, optical and thermal properties. J Nanosci Nanotechnol 7(3):986–993

    CAS  Google Scholar 

  • Rao Y, Pochan JM (2006) Mechanics of polymer−clay nanocomposites. Macromolecules 40(2):290–296

    Google Scholar 

  • Raquez J-M, Nabar Y, Narayan R, Dubois P (2011) Preparation and characterization of maleated thermoplastic starch-based nanocomposites. J Appl Polym Sci 122(1):639–647

    CAS  Google Scholar 

  • Ratnayake WS, Jackson DS, Steve LT (2008) Starch gelatinization. Adv Food Nutr Res 55:221–268

    Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    CAS  Google Scholar 

  • Reis RL, Cunha AM, Allan PS, Bevis MJ (1997) Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Adv Polym Technol 16(4):263–277

    CAS  Google Scholar 

  • Remsen CH, Clark JP (1978) A viscosity model for a cooking dough. J Food Process Eng 2(1):39–64

    Google Scholar 

  • Ren P, Shen T, Wang F, Wang X, Zhang Z (2009) Study on biodegradable starch/OMMT nanocomposites for packaging applications. J Polym Environ 17(3):203–207

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    CAS  Google Scholar 

  • Rodriguez P, Muñoz-Aguirre N, San-Martín Martinez E, González de la Cruz G, Tomas SA, Zelaya Angel O (2008) Synthesis and spectral properties of starch capped CdS nanoparticles in aqueous solution. J Cryst Growth 310(1):160–164

    CAS  Google Scholar 

  • Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2004) Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym 58(2):139–147

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    CAS  Google Scholar 

  • Romhány G, Karger-Kocsis J, Czigány T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288(9):699–707

    Google Scholar 

  • Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19):5643–5654

    CAS  Google Scholar 

  • Russell PL (1987) Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci 6(2):133–145

    CAS  Google Scholar 

  • Russo MAL, O’Sullivan C, Rounsefell B, Halley PJ, Truss R, Clarke WP (2009) The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging materials. Bioresour Technol 100(5):1705–1710

    CAS  Google Scholar 

  • Sadjadi MS, Meskinfam M, Sadeghi B, Jazdarreh H, Zare K (2010) In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater Chem Phys 124(1):217–222

    CAS  Google Scholar 

  • Saito Y, Putaux JL, Okano T, Gaill F, Chanzy H (1997) Structural aspects of the swelling of β chitin in HCl and its conversion into α chitin. Macromolecules 30(13):3867–3873

    CAS  Google Scholar 

  • Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology. Wiley-VCH, Weinheim, pp 55–70

    Google Scholar 

  • Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517

    CAS  Google Scholar 

  • Shen Z, Simon GP, Cheng Y-B (2002) Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites. Polymer 43(15):4251–4260

    CAS  Google Scholar 

  • Shi R, Liu Q, Ding T, Han Y, Zhang L, Chen D, Tian W (2007a) Ageing of soft thermoplastic starch with high glycerol content. J Appl Polym Sci 103(1):574–586

    CAS  Google Scholar 

  • Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007b) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69(4):748–755

    CAS  Google Scholar 

  • Shogren RL, Swanson CL, Thompson AR (1992) Extrudates of cornstarch with urea and glycols: structure/mechanical property relations. Starch-Starke 44(9):335–338

    CAS  Google Scholar 

  • Shu XZ, Zhu KJ (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm 201(1):51–58

    CAS  Google Scholar 

  • Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Google Scholar 

  • Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Google Scholar 

  • Sinha Ray S, Okamoto K, Okamoto M (2003) Structure−property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36(7):2355–2367

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Google Scholar 

  • Smits ALM, Kruiskamp PH, van Soest JJG, Vliegenthart JFG (2003) Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydr Polym 53(4):409–416

    CAS  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    CAS  Google Scholar 

  • Sposito G, Grasso D (1999) Electrical double layer structure, forces, and fields at the clay-water interface. In: Hsu J-P (ed) Interfacial forces and fields: theory and applications, vol 85, Surfactant science. Marcel Dekker, New York, pp 207–249

    Google Scholar 

  • Sreekala MS, Goda K, Devi PV (2008) Sorption characteristics of water, oil and diesel in cellulose nanofiber reinforced corn starch resin/ramie fabric composites. Compos Interfaces 15:281–299

    CAS  Google Scholar 

  • Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62(2):130–136

    CAS  Google Scholar 

  • Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41(14):2508–2512

    CAS  Google Scholar 

  • Stobinski L, Tomasik P, Lii C-Y, Chan H-H, Lin H-M, Liu H-L, Kao C-T, Lu K-S (2003) Single-walled carbon nanotube-amylopectin complexes. Carbohydr Polym 51(3):311–316

    CAS  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25(2):265–271

    CAS  Google Scholar 

  • Sun L, Boo WJ, Browning RL, Sue H-J, Clearfield A (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17(23):5606–5609

    CAS  Google Scholar 

  • Sundaram J, Durance TD, Wang R (2008) Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomater 4(4):932–942

    CAS  Google Scholar 

  • Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69(3–4):500–506

    CAS  Google Scholar 

  • Tako M, Hizukuri S (2002) Gelatinization mechanism of potato starch. Carbohydr Polym 48(4):397–401

    CAS  Google Scholar 

  • Tan I, Wee CC, Sopade PA, Halley PJ (2004a) Investigation of the starch gelatinisation phenomena in water-glycerol systems: application of modulated temperature differential scanning calorimetry. Carbohydr Polym 58(2):191–204

    CAS  Google Scholar 

  • Tan I, Wee CC, Sopade PA, Halley PJ (2004b) Estimating the specific heat capacity of starch-water-glycerol systems as a function of temperature and compositions. Starch-Starke 56(1):6–12

    CAS  Google Scholar 

  • Tan I, Flanagan BM, Halley PJ, Whittaker AK, Gidley MJ (2007) A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules 8(3):885–891

    CAS  Google Scholar 

  • Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85(1):7–16

    CAS  Google Scholar 

  • Tang S, Zou P, Xiong H, Tang H (2008a) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72(3):521–526

    CAS  Google Scholar 

  • Tang X, Alavi S, Herald TJ (2008b) Effects of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydr Polym 74(3):552–558

    CAS  Google Scholar 

  • Tang X, Alavi S, Herald TJ (2008c) Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem 85(3):433–439

    CAS  Google Scholar 

  • Tang H, Xiong H, Tang S, Zou P (2009) A starch-based biodegradable film modified by nano silicon dioxide. J Appl Polym Sci 113(1):34–40

    CAS  Google Scholar 

  • Taubert A, Wegner G (2002) Formation of uniform and monodisperse zincite crystals in the presence of soluble starch. J Mater Chem 12(4):805–807

    CAS  Google Scholar 

  • Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci 36(10):1336–1346

    CAS  Google Scholar 

  • Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431

    CAS  Google Scholar 

  • Tettenhorst R (1962) Cation migration in montmorillonites. Am Mineral 47(5–6):769–773

    CAS  Google Scholar 

  • Thomas F, Michot LJ, Vantelon D, Montargès E, Prélot B, Cruchaudet M, Delon JF (1999) Layer charge and electrophoretic mobility of smectites. Colloids Surf A Physicochem Eng Asp 159(2–3):351–358

    CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    CAS  Google Scholar 

  • Tigau N, Ciupina V, Prodan G (2005) The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. J Cryst Growth 277(1–4):529–535

    CAS  Google Scholar 

  • Tsai Y-C, Chen S-Y, Liaw H-W (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sensors Actuators B Chem 125(2):474–481

    CAS  Google Scholar 

  • Tsai ML, Bai SW, Chen RH (2008) Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr Polym 71(3):448–457

    CAS  Google Scholar 

  • Tung C-C, Ku T-H, Lin C-A (2011) The effect of plasticizers and characterization on formamide pseudo-thermoplastic potato starch films using solution casting method. Polym Plast Technol Eng 50(14):1452–1457

    CAS  Google Scholar 

  • Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30(25):8000–8009

    CAS  Google Scholar 

  • Valdés M, Valdés González A, García Calzón J, Díaz-García M (2009) Analytical nanotechnology for food analysis. Microchim Acta 166(1):1–19

    Google Scholar 

  • Van Soest JJG, Knooren N (1997) Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J Appl Polym Sci 64(7):1411–1422

    Google Scholar 

  • van Soest JJG, de Wit D, Tournois H, Vliegenthart JFG (1994) The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer 35(22):4722–4727

    Google Scholar 

  • van Soest JJG, Bezemer RC, de Wit D, Vliegenthart JFG (1996) Influence of glycerol on the melting of potato starch. Ind Crop Prod 5(1):1–9

    Google Scholar 

  • Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179

    CAS  Google Scholar 

  • Vigneshwaran N, Sampath K, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20):5087–5095

    CAS  Google Scholar 

  • Viguié J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7(11):1206–1216

    Google Scholar 

  • Volkert B, Lehmann A, Greco T, Nejad MH (2010) A comparison of different synthesis routes for starch acetates and the resulting mechanical properties. Carbohydr Polym 79(3):571–577

    CAS  Google Scholar 

  • Vorwerg W, Dijksterhuis J, Borghuis J, Radosta S, Kröger A (2004) Film properties of hydroxypropyl starch. Starch-Starke 56(7):297–306

    CAS  Google Scholar 

  • Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69(7–8):1212–1217

    CAS  Google Scholar 

  • Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    CAS  Google Scholar 

  • Wang B-X, Zhao X-P (2006) The influence of intercalation rate and degree of substitution on the electrorheological activity of a novel ternary intercalated nanocomposite. J Solid State Chem 179(3):949–954

    CAS  Google Scholar 

  • Wang SS, Zheng X (1995) Tribological shear conversion of starch. J Food Sci 60(3):520–522

    CAS  Google Scholar 

  • Wang SS, Chiang WC, Zhao B, Zheng XG, Kim IH (1991) Experimental analysis and computer simulation of starch-water interactions during phase transition. J Food Sci 56(1):121–124

    CAS  Google Scholar 

  • Wang X-L, Yang K-K, Wang Y-Z (2003) Properties of starch blends with biodegradable polymers. Polym Rev 43(3):385–409

    CAS  Google Scholar 

  • Wang N, Yu J, Chang PR, Ma X (2007) Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly(lactic acid) blends. Starch-Starke 59(9):409–417

    CAS  Google Scholar 

  • Wang N, Jiugao Y, Xiaofei M, Chunmei H (2009a) An investigation of the physical properties of extruded glycerol- and formamide-plasticized cornstarch. J Thermoplast Compos Mater 22(3):273–291

    CAS  Google Scholar 

  • Wang N, Zhang X, Han N, Bai S (2009b) Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr Polym 76(1):68–73

    CAS  Google Scholar 

  • Wang N, Zhang X, Wang X, Liu H (2009c) Communications: ionic liquids modified montmorillonite/thermoplastic starch nanocomposites as ionic conducting biopolymer. Macromol Res 17(5):285–288

    CAS  Google Scholar 

  • Wang X, Zhang X, Liu H, Wang N (2009d) Impact of pre-processing of montmorillonite on the properties of melt-extruded thermoplastic starch/montmorillonite nanocomposites. Starch-Starke 61(9):489–494

    CAS  Google Scholar 

  • Wang J, Yu L, Xie F, Chen L, Li X, Liu H (2010a) Rheological properties and phase transition of cornstarches with different amylose/amylopectin ratios under shear stress. Starch-Starke 62(12):667–675

    CAS  Google Scholar 

  • Wang N, Zhang X, Han N, Liu H (2010b) A facile method for preparation of thermoplastic starch/urea modified montmorillonite nanocomposites. J Compos Mater 44(1):27–39

    CAS  Google Scholar 

  • Wei Q, Kang S-Z, Mu J (2004) “Green” synthesis of starch capped CdS nanoparticles. Colloids Surf A Physicochem Eng Asp 247(1–3):125–127

    CAS  Google Scholar 

  • Wei T, Luo G, Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C (2009) Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon 47(9):2296–2299

    CAS  Google Scholar 

  • Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59–62

    Google Scholar 

  • Wilhelm H-M, Sierakowski M-R, Souza GP, Wypych F (2003a) The influence of layered compounds on the properties of starch/layered compound composites. Polym Int 52(6):1035–1044

    CAS  Google Scholar 

  • Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003b) Starch films reinforced with mineral clay. Carbohydr Polym 52(2):101–110

    CAS  Google Scholar 

  • Wilkie CA, Zhu J, Uhl F (2001) How do nanocomposites enhance the thermal stability of polymer. Polym Prepr 42(1):392

    CAS  Google Scholar 

  • Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 80(3):866–873

    CAS  Google Scholar 

  • Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8(2):105–112

    CAS  Google Scholar 

  • Wu C-S, Liao H-T (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48(15):4449–4458

    CAS  Google Scholar 

  • Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21(15):1032–1034

    CAS  Google Scholar 

  • Wu Z, Feng W, Feng Y, Liu Q, Xu X, Sekino T, Fujii A, Ozaki M (2007) Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45(6):1212–1218

    CAS  Google Scholar 

  • Wu H, Liu C, Chen J, Chang PR, Chen Y, Anderson DP (2009a) Structure and properties of starch/α−zirconium phosphate nanocomposite films. Carbohydr Polym 77(2):358–364

    CAS  Google Scholar 

  • Wu M, Wang M, Ge M (2009b) Investigation into the performance and mechanism of SiO2 nanoparticles and starch composite films. J Text Inst 100(3):254–259

    CAS  Google Scholar 

  • Wu D, Chang PR, Ma X (2011) Preparation and properties of layered double hydroxide-carboxymethylcellulose sodium/glycerol plasticized starch nanocomposites. Carbohydr Polym 86(2):877–882

    CAS  Google Scholar 

  • Xiao Y, Li CM (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 20(6):648–662

    CAS  Google Scholar 

  • Xie F, Liu H, Chen P, Xue T, Chen L, Yu L, Corrigan P (2006) Starch gelatinization under shearless and shear conditions. Int J Food Eng 2(5), Article 6/1–29

    Google Scholar 

  • Xie F, Yu L, Chen L, Li L (2008) A new study of starch gelatinization under shear stress using dynamic mechanical analysis. Carbohydr Polym 72(2):229–234

    CAS  Google Scholar 

  • Xie F, Yu L, Su B, Liu P, Wang J, Liu H, Chen L (2009) Rheological properties of starches with different amylose/amylopectin ratios. J Cereal Sci 49(3):371–377

    CAS  Google Scholar 

  • Xie Y, Chang PR, Wang S, Yu J, Ma X (2011) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. Starch composites. Carbohydr Polym 83(1):186–191

    CAS  Google Scholar 

  • Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37(4):595–623

    CAS  Google Scholar 

  • Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628

    CAS  Google Scholar 

  • Xie F, Liu P, Yu L (2014) Processing of plasticized starch-based materials: state of art and perspectives. In: Halley PJ, Avérous LR (eds) Starch polymers: from genetic engineering to green applications. Elsevier, Amsterdam, pp 257–289

    Google Scholar 

  • Xiong H, Tang S, Tang H, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71(2):263–268

    CAS  Google Scholar 

  • Xu Y, Zhou J, Hanna MA (2005) Melt-intercalated starch acetate nanocomposite foams as affected by type of organoclay. Cereal Chem 82(1):105–110

    CAS  Google Scholar 

  • Xue T, Yu L, Xie F, Chen L, Li L (2008) Rheological properties and phase transition of starch under shear stress. Food Hydrocoll 22(6):973–978

    CAS  Google Scholar 

  • Yan L, Chang PR, Zheng P (2011) Preparation and characterization of starch-grafted multiwall carbon nanotube composites. Carbohydr Polym 84(4):1378–1383

    CAS  Google Scholar 

  • Yan Q, Hou H, Guo P, Dong H (2012) Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87(1):707–712

    CAS  Google Scholar 

  • Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98(3):1087–1091

    CAS  Google Scholar 

  • Yang J-H, Yu J-G, Ma X-F (2006a) Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydr Polym 66(1):110–116

    CAS  Google Scholar 

  • Yang J-H, Yu J-G, Ma X-F (2006b) Preparation of a novel thermoplastic starch (TPS) material using ethylenebisformamide as the plasticizer. Starch-Starke 58(7):330–337

    CAS  Google Scholar 

  • Yang J-H, Yu J-G, Ma X-F (2006c) Preparation and properties of ethylenebisformamide plasticized potato starch (EPTPS). Carbohydr Polym 63(2):218–223

    CAS  Google Scholar 

  • Yang J-H, Yu J-G, Feng Y, Ma X-F (2007) Study on the properties of ethylenebisformamide plasticized corn starch (EPTPS) with various original water contents of corn starch. Carbohydr Polym 69(2):256–261

    CAS  Google Scholar 

  • Yang L, Zhang B, Liang Y, Yang B, Kong T, Zhang L-M (2008) In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly. Carbohydr Res 343(14):2463–2467

    CAS  Google Scholar 

  • Yao K, Cai J, Liu M, Yu Y, Xiong H, Tang S, Ding S (2011) Structure and properties of starch/PVA/nano-SiO2 hybrid films. Carbohydr Polym 86(4):1784–1789

    CAS  Google Scholar 

  • Yu J, Wang N, Ma X (2005a) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch-Starke 57(10):494–504

    CAS  Google Scholar 

  • Yu J, Zhang LQ, Rogunova M, Summers J, Hiltner A, Baer E (2005b) Conductivity of polyolefins filled with high-structure carbon black. J Appl Polym Sci 98(4):1799–1805

    CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006a) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602

    CAS  Google Scholar 

  • Yu L, Kealy T, Chen P (2006b) Study of starch gelatinization in a flow field using simultaneous rheometric data collection and microscopic observation. Int Polym Process 21(3):283–289

    CAS  Google Scholar 

  • Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100(11):2832–2841

    CAS  Google Scholar 

  • Yun Y-H, Hwang K-J, Wee Y-J, Yoon S-D (2011) Synthesis, physical properties, and characterization of starch-based blend films by adding nano-sized TiO2/poly(methyl metacrylate-co-acrylamide). J Appl Polym Sci 120(3):1850–1858

    CAS  Google Scholar 

  • Zamudio-Flores PB, Torres AV, Salgado-Delgado R, Bello-Pérez LA (2010) Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch and modified starch/chitosan blend films. J Appl Polym Sci 115(2):991–998

    CAS  Google Scholar 

  • Zeng M, Huang Y, Lu L, Fan L, Lourdin D (2011) Effects of filler-matrix morphology on mechanical properties of corn starch-zein thermo-moulded films. Carbohydr Polym 84(1):323–328

    CAS  Google Scholar 

  • Zeppa C, Gouanvé, Espuche E (2009) Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. J Appl Polym Sci 112(4):2044–2056

    CAS  Google Scholar 

  • Zhang X, Golding J, Burgar I (2002) Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer 43(22):5791–5796

    CAS  Google Scholar 

  • Zhang Q-X, Yu Z-Z, Xie X-L, Naito K, Kagawa Y (2007) Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 48(24):7193–7200

    CAS  Google Scholar 

  • Zhang J-s, Chang PR, Wu Y, Yu J-g, Ma X-f (2008) Aliphatic amidediol and glycerol as a mixed plasticizer for the preparation of thermoplastic starch. Starch-Starke 60(11):617–623

    CAS  Google Scholar 

  • Zhao X, Wang B, Li J (2008) Synthesis and electrorheological activity of a modified kaolinite/carboxymethyl starch hybrid nanocomposite. J Appl Polym Sci 108(5):2833–2839

    CAS  Google Scholar 

  • Zheng X, Wang SS (1994) Shear induced starch conversion during extrusion. J Food Sci 59(5):1137–1143

    CAS  Google Scholar 

  • Zheng X, Chiang W-C, Wang SS (1995) Effect of shear energy on size reduction of starch granules in extrusion. Starch-Starke 47(4):146–151

    CAS  Google Scholar 

  • Zheng P, Chang PR, Yu J, Ma X (2009a) Preparation of Sb2O3-carboxymethyl cellulose sodium nanoparticles and their reinforcing action on plasticized starch. Starch-Starke 61(11):665–668

    CAS  Google Scholar 

  • Zheng P, Chang PR, Yu J, Ma X (2009b) Formamide and 2-hydroxy-N-[2-(2-hydroxy-propionylamino)-ethyl] propionamide (HPEP) as a mixed plasticizer for thermoplastic starch. Carbohydr Polym 78(2):296–301

    CAS  Google Scholar 

  • Zhou M, Zhao J, Zhou L (2011) Utilization of starch and montmorrilonite for the preparation of superabsorbent nanocomposite. J Appl Polym Sci 121(4):2406–2412

    CAS  Google Scholar 

  • Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch-Starke 40(2):44–50

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengwei Xie or Luc Avérous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Xie, F., Pollet, E., Halley, P.J., Avérous, L. (2014). Advanced Nano-biocomposites Based on Starch. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics