Skip to main content

Uniform Attractors of Nonautonomous Dynamical Systems with Memory

  • Chapter
Evolution Equations, Semigroups and Functional Analysis

Abstract

The study of nonlinear dynamical systems is of basic importance in the understanding of several natural phenomena. If a certain mathematical model is described by a nonlinear dynamical system, then it is usually difficult to predict whether or not the system will evolve towards a stationary state or it will exhibit a chaotic behavior. The sensibility to the initial conditions and to the parameters characterizing the nonlinear system show that a correct approach to study its dynamics should be more geometric. This means that the evolution system must be treated as an ordinary differential equation whose solutions (trajectories) can be viewed as curves in a suitable phase space, possibly of infinite dimension. We recall, for instance, that the chaotic behavior of some nonlinear system can be explained by the existence of a so-called strange attractor, that is, a set, usually of finite fractal dimension, which attracts uniformly any trajectory. Actually, this means that in the long run the dynamics of an infinite-dimensional system is controlled by a finite number of parameters and this can be of some help for possible numerical approximations.

Dedicated to the memory of Brunello Terreni

“... ben tetragono ai colpi di ventura”(Par., XVII, 24)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Amerio, G. Prouse, Abstract Almost Periodic Functions and Functional Equations, Van Nostrand, New York (1971)

    Google Scholar 

  2. A.V. Babin, M.I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  3. V. Belleri, V. Pata, Attractors for semilinear strongly damped wave equation on R 3, Discrete Contin. Dynam. Systems 7, 719–735 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Borini, V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal. 20, 263–277 (1999)

    MathSciNet  MATH  Google Scholar 

  5. V.V. Chepyzhov, M.I. Vishik, N on-autonomous evolution equations and their attractors, Russian J. Math. Phys. 1, 165–190 (1993)

    MathSciNet  MATH  Google Scholar 

  6. V.V. Chepyzhov, M.I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl. 73, 279–333 (1994)

    MathSciNet  MATH  Google Scholar 

  7. V.V. Chepyzhov, M.I. Vishik, Non-autonomous evolutionary equations with translation compact symbols and their attractor, C.R. Acad. Sci. Paris Sér. I Math. 321, 153–158 (1995)

    MathSciNet  MATH  Google Scholar 

  8. B.D. Coleman, M.E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys. 18, 199–208 (1967)

    Article  MathSciNet  Google Scholar 

  9. CM. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Engquist, W. Schmid (Eds.), Mathematics Unlimited — 2001 and Beyond, Springer, Berlin Heidelberg (2001)

    MATH  Google Scholar 

  11. M. Fabrizio, A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies Appl. Math. 12, SIAM, Philadelphia (1992)

    Google Scholar 

  12. C. Giorgi, M. Grasselli, V. Pata, Well-posedness and longtime behavior of the phase-field model with memory in a history space setting, Quart. Appl. Math. 59, 701–736 (2001)

    MathSciNet  MATH  Google Scholar 

  13. C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J. 48, 1395–1445 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Giorgi, A. Marzocchi, V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl. 5, 333–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Giorgi, A. Marzocchi, V. Pata, Uniform attractors for a non-autonomous semi-linear heat equation with memory, Quart. Appl. Math. 58, 661–683 (2000)

    MathSciNet  MATH  Google Scholar 

  16. M. Grasselli, V. Pata, Longtime behavior of a homogenized model in viscoelastody-namics, Discrete Contin. Dynam. Systems 4, 338–359 (1998)

    MathSciNet  Google Scholar 

  17. M. Grasselli, V. Pata, Upper semicontinuous attractor for a hyperbolic phase-field model with memory, Indiana Univ. Math. J. 50, 1281–1308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Grasselli, V. Pata, On the dissipativity of a hyperbolic phase-field system with memory, Nonlinear Anal. 47, 3157–3169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Grasselli, V. Pata, On the longterm behavior of a parabolic phase-field model with memory, in “Differential Equations and Control Theory” (S. Aizicovici and N.H. Pavel, eds.), 147–157, Lecture Notes in Pure and Appl. Math. 225, Dekker, New York (2002)

    Google Scholar 

  20. M. Grasselli, V. Pata, F.M. Vegni, Longterm dynamics of a conserved phase-field system with memory, submitted

    Google Scholar 

  21. M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Y.M. Haddad, Viscoelasticity of engineering materials, Chapman & Hall, London (1985)

    Google Scholar 

  23. J.K. Hale, Asymptotic behavior of dissipative systems, Math. Surv. Monogr. n. 25, Amer. Math. Soc., Providence (1988)

    Google Scholar 

  24. A. Haraux, Systèmes dynamiques dissipatifs et applications, Coll. RMA n. 17, Masson, Paris (1990)

    Google Scholar 

  25. J. Jackie, Heat conduction and relaxation in liquids of high viscosity, Phys. A 162, 377–404 (1990)

    Article  Google Scholar 

  26. B.M. Levitan, V.V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  27. Z. Liu, S. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC Res. Notes Math. n. 398, Boca Raton (1999)

    Google Scholar 

  28. V. Pata, Attractors for a damped wave equation on R 3 with linear memory, Math. Methods Appl. Sci. 23, 633–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Pata, Hyperbolic limit of parabolic semilinear heat equation with fading memory, Z. Anal. Anwendungen 20, 359–377 (2001)

    MathSciNet  MATH  Google Scholar 

  30. V. Pata, A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl. (to appear)

    Google Scholar 

  31. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  32. M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical problems in viscoelasticity, Longman Scientific & Technical; Harlow John Wiley & Sons, Inc., New York (1987)

    MATH  Google Scholar 

  33. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer, New York (1988)

    MATH  Google Scholar 

  34. M.I. Vishik, Asymptotic behaviour of solutions of evolutionary equations, Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Grasselli, M., Pata, V. (2002). Uniform Attractors of Nonautonomous Dynamical Systems with Memory. In: Lorenzi, A., Ruf, B. (eds) Evolution Equations, Semigroups and Functional Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol 50. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8221-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8221-7_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9480-7

  • Online ISBN: 978-3-0348-8221-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics