Skip to main content

Symmetry-Breaking as an Origin of Species

  • Chapter
Bifurcation, Symmetry and Patterns

Part of the book series: Trends in Mathematics ((TM))

Abstract

A central problem in evolutionary biology is the occurrence in the fossil record of new species of organisms. Darwin’s view, inThe Origin of Species,was that speciation is the result of gradual accumulations of changes in body-plan and behaviour. Mayr asked why gene-flow failed to prevent speciation, and his answer was the classical allopatric theory in which a small founder population becomes geographically isolated and evolves independently of the main group. An alternative class of mechanisms, sympatric speciation, assumes that no such isolation occurs. These mechanisms overcome the stabilising effect of gene-flow by invoking selection effects, for example sexual selection and assortative mating. We interpret sympatric speciation as a form of symmetry-breaking bifurcation, and model it by a system of nonlinear ODEs that is ‘all-to-all coupled’, that is, equivariant under the action of the symmetric group SN. We show that such bifurcations can be interpreted as speciation events in which the dominant long-term behaviour is divergence into two species. Generically this divergence occurs by jump bifurcation - `punctuated equilibrium’ in the terminology of evolutionary biology. Despite the discontinuity of such a bifurcation, mean phenotypes change smoothly during such a speciation event. So, arguably, do mean-field genotypes related to continous characters.Our viewpoint is that speciation is driven by natural selection acting on organisms, with the role of the genes being secondary: to ensure plasticity of phenotypes. This view is supported, for example, by the evolutionary history of African lake cichlids, where over 400 species (with less genetic diversity than humans) have arisen over a period of perhaps 200,000 years. Sympatric speciation of the kind we discuss is invisible to classical mean-field genetics, because mean-field genotypes vary smoothly.Our methods include numerical simulations and analytic techniques from equivariant bifurcation theory. We focus on two main models: the generic cubic-order truncation of a symmetry-breaking bifurcation in an SN-equivariant system of ODEs, and the BirdSym system introduced by Elmhirst in which the biological interpretation of variables is more explicit.We relate our conclusions to field observations of various organisms, including Darwin's finches. We also offer a biological interpretation of our models, in which speciation is represented as an emergent property of a complex system of entities at the organism level. We briefly review questions about selection at the level of groups or species in the light of this interpretation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.K. Arrowsmith and C.M. Place. An Introduction to Dynamical Systems, Cambridge U Press, Cambridge 1990.

    MATH  Google Scholar 

  2. S.Y. Auyang. Foundations of Complex-System Theories, Cambridge U Press, Cambridge 1998.

    MATH  Google Scholar 

  3. S.M. Baer, T. Erneux, and J. Rinzel. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance, SIAM J. Appl. Math. 49 (1989) 55–71.

    Article  MathSciNet  MATH  Google Scholar 

  4. C.R. Bantock and J.A Bayley. Visual selection for shell size in Cepea (Held), J. Anim. Ecol. 42 (1973) 247–261.

    Article  Google Scholar 

  5. C.R. Bantock, J.A. Bayley, and P.H. Harvey. Simultaneous selective predation on two features of a mixed sibling species population, Evolution 29 (1975) 636–649.

    Article  Google Scholar 

  6. E. Barany, M. Dellnitz, and M. Golubitsky. Detecting the symmetry of attractors, Physica D 67 (1993) 66–87.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.S.K. Barnes. Life-history strategies in contrasting populations of the coastal gastropod Hydrobia III. Lagoonal versus intertidal-marine H. neglecta, Vie Milieu 43 (1993) 73–83.

    Google Scholar 

  8. R.S.K. Barnes. Investment in eggs in lagoonal Hydrobia ventrosa and life-history strategies in north-west European Hydrobia species, J. Mar. Biol. Ass. 74 (1994) 637–650.

    Article  Google Scholar 

  9. R.S.K. Barnes. Breeding, recruitment and survival in a mixed intertidal population of the mudsnails Hydrobia ulvae and H. neglecta, J. Mar. Biol. Ass. 76 (1996) 1003–1012.

    Article  Google Scholar 

  10. R.S.A. Beauchamp and P. Ullyett. Competitive relationships between certain species of fresh-water triclads, J. Ecol. 20 (1932) 200–208.

    Article  Google Scholar 

  11. R.K. Butlin and G.M. Hewitt. A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae), Biol. J. Linn. Soc. 26 (1985) 287–299.

    Article  Google Scholar 

  12. B. Candelpergher, F. Diener, and M. Diener. Retard à la bifurcation: du local au global, in Bifurcations of Planar Vector Fields, Luminy 1989, Lecture Notes in Math. 1455, Springer-Verlag, Berlin 1990, 1–19.

    Google Scholar 

  13. J. Carr. Applications of Centre Manifold Theory, Springer-Verlag, New York 1981.

    Book  MATH  Google Scholar 

  14. C. Cicogna. Symmetry breakdown from bifurcation, Lett. Nuovo Cimento 31 (1981) 600–602.

    MathSciNet  Google Scholar 

  15. J. Cohen and I. Stewart. The Collapse of Chaos, Viking, New York 1994.

    Google Scholar 

  16. J. Cohen and I. Stewart. Figments of Reality, Cambridge U Press, Cambridge 1997.

    Google Scholar 

  17. J. Cohen and I. Stewart. Polymorphism viewed as phenotypic symmetry-breaking, in Nonlinear Phenomena in Physical and Biological Sciences (S.K. Malik ed.), Indian National Science Academy, New Delhi 2000, to appear.

    Google Scholar 

  18. J. Cohen, I. Stewart, and T. Elmhirst. Symmetry, stochastics, and sympatric speciation, in preparation.

    Google Scholar 

  19. L.M. Cook. Coefficients of Natural Selection, Hutchinson, London 1971.

    Google Scholar 

  20. R. Dawkins. The Selfish Gene, Oxford U Press, Oxford 1976.

    Google Scholar 

  21. R. Dawkins. The Extended Phenotype, Freeman, San Francisco 1982.

    Google Scholar 

  22. L. Dicks. All for one! New Scientist (8 July 2000) 30–35.

    Google Scholar 

  23. U. Dieckmann and M. Doebeli. On the origin of species by sympatric speciation, Nature 400 (1999) 354–457.

    Article  Google Scholar 

  24. F. Diener and M. Diener. Maximal delay, in Dynamic Bifurcations, Luminy 1990, Lecture Notes in Math. 1493 (ed. E. Benoit), Springer-Verlag, Berlin 1991, 71–86.

    Google Scholar 

  25. Th. Dobzhansky. Genetics and the Origin of Species, Columbia U Press, New York 1937.

    Google Scholar 

  26. N. Eldredge and S.J. Gould. Punctuated equilibrium: an alternative to phyletic gradualism, in Models in Palaeobiology (ed. T.J.M. Schopf), Cooper, San Francisco 1972.

    Google Scholar 

  27. T. Elmhirst. Symmetry-Breaking Bifurcations of SIN-Equivariant Vector Fields and Polymorphism, MSc thesis, Mathematics Institute, U of Warwick 1998.

    Google Scholar 

  28. T. Elmhirst. Symmetry and Emergence in Polymorphism and Sympatric Speciation, PhD Thesis, Mathematics Institute, University of Warwick, to appear.

    Google Scholar 

  29. T. Fenchel. Factors determining the distribution patterns of mud snails (Hydrobiidae), Oecologia 20 (1975) 1–17.

    Article  MathSciNet  Google Scholar 

  30. T. Fenchel. Character displacement and coexistence in mud snails, Oecologia 20 (1975) 19–32.

    Article  Google Scholar 

  31. J.B. Fraleigh. A First Course in Abstract Algebra (3rd. ed.), Addison-Wesley, Reading MA 1982.

    Google Scholar 

  32. D. Francis, J. Diorio, D. Liu, and M.J. Meaney. Nongenomic transmission across generations of maternal behavior and stress responses in the rat, Science 286 (1999) 1155–1158.

    Article  Google Scholar 

  33. F. Galton. Hereditary Genius, Macmillan, London 1869.

    Book  Google Scholar 

  34. M. Golubitsky and D.G. Schaeffer. Bifurcations with 0(3) symmetry including applications to the Bénard problem, Commun. Pure Appl. Math. 35 (1982) 81–111.

    MathSciNet  MATH  Google Scholar 

  35. M. Golubitsky and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory vol 1, Applied Mathematical Sciences 51, Springer-Verlag, New York 1985.

    Google Scholar 

  36. M. Golubitsky, I.N. Stewart, and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory vol 2, Applied Mathematical Sciences 69, Springer-Verlag, New York 1988.

    Book  Google Scholar 

  37. P.R. Grant. Natural selection and Darwin’s finches, Scientific American (October 1991) 60–65.

    Google Scholar 

  38. P.R. Grant, B.R. Grant, J.N.M. Smith, I.J. Abbott, and L.K. Abbott. Darwin’s finches: Population variation and natural selection, Proc. Nat. Acad. Sci. USA 73 (1976) 257–261.

    Article  Google Scholar 

  39. ].I. Gihman and A.V. Skorohod. Stochastic Differential Equations, Springer-Verlag, Berlin 1970.

    Google Scholar 

  40. M.G. Hayes. Geometric Analysis of Delayed Bifurcations, PhD Thesis, Boston U 1999.

    Google Scholar 

  41. M.K. Hecht and A. Hoffman. Why not neo-Darwinism? A critique of paleobiological challenges, in Oxford Surveys in Evolutionary Biology 3 (eds. R. Dawkins and M. Ridley), Oxford U Press, Oxford 1986, 1–47.

    Google Scholar 

  42. M. Higashi, G. Takimoto, and N. Yamamura. Sympatric speciation by sexual selection, Nature 402 (1999) 523–526.

    Article  Google Scholar 

  43. J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems, Cambridge U Press, Cambridge 1988.

    MATH  Google Scholar 

  44. R.B. Huey, G.W. Gilchrist, M.L. Carlson, D. Berrigan, and L. Serra. Rapid evolution of a geographic cline in size in an introduced fly, Science 287 (2000) 308–310.

    Article  Google Scholar 

  45. R.B. Huey and E.R. Pianka. Ecological character displacement in a lizard, Am. Zoo/. 14 (1974) 1127–1136.

    Google Scholar 

  46. R.B. Huey, E.R. Pianka, M.E. Egan, and L.W. Coons. Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus), Ecology 55 (1974) 304–316.

    Article  Google Scholar 

  47. K. Itô. On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1961).

    Google Scholar 

  48. S.A. Kauffman. The Origins of Order, Oxford U Press, Oxford 1993.

    Google Scholar 

  49. S.A. Kauffman. At Home in the Universe, Viking, New York 1995.

    Google Scholar 

  50. T.J. Kawecki. Sympatric speciation via habitat specialization driven by deleterious mutations, Evolution 51 (1997) 1751–1763.

    Article  Google Scholar 

  51. Y. Kifer. General random perturbations of hyperbolic and expanding transformations, J. d’Anal. Math. 47 (1986) 111–150.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Kimura. The Neutral Theory of Molecular Evolution, Cambridge U Press, Cambridge 1983.

    Book  Google Scholar 

  53. A.S. Kondrashov and F.A. Kondrashov. Interactions among quantitative traits in the course of sympatric speciation, Nature 400 (1999) 351–354.

    Article  Google Scholar 

  54. D. Lack. Darwin’s Finches. An Essay on the General Biological Theory of Evolution, Peter Smith, Gloucester MA 1968.

    Google Scholar 

  55. R.C. Lewontin and J.L. Hubby. A molecular approach to the study of genic heterozygosity in natural populations II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura, Genetics 54 (1966) 595–605.

    Google Scholar 

  56. K. Mainzer. Thinking in Complexity, Springer-Verlag, Berlin 1994.

    Google Scholar 

  57. E. Mayr. Animal Species and Evolution, Belknap Press, Cambridge MA 1963.

    Google Scholar 

  58. E. Mayr. Populations, Species, and Evolution, Harvard U Press, Cambridge MA 1970.

    Google Scholar 

  59. A Meyer. Phylogenetic relationships and evolutionary processes in East African cichlid fishes, Trends in Ecol. and Evol. 8 (1993) 279–284.

    Article  Google Scholar 

  60. H.P. McKean. Stochastic Integrals, Academic Press, New York 1969.

    MATH  Google Scholar 

  61. R.M. Neems and R.K. Butlin. Divergence in cuticular hydrocarbons between parapatric subspecies of the meadow grasshopper Chorthippus parallelus (Orthoptera, Acrididae), Biol. J. Linn. Soc. 54 (1995) 139–149.

    Google Scholar 

  62. A.I. Niehstadt. Persistence of stability loss for dynamical bifurcations I, Diff. Eq. 23 (1987) 1385–1391

    Google Scholar 

  63. A.I. Niehstadt. Persistence of stability loss for dynamical bifurcations II, Diff. Eq. 24 (1988) 171–196.

    Google Scholar 

  64. E. Pennisi. Nature steers a predictable course, Science 287 (2000) 207–208.

    Article  Google Scholar 

  65. R. Rice and E.E. Hostert. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47 (1993) 1637–1653.

    Article  Google Scholar 

  66. M. Ridley. The Problems of Evolution. Oxford U Press, Oxford 1985.

    Google Scholar 

  67. M. Ridley. Evolution, Blackwell, Oxford 1996.

    Google Scholar 

  68. C.D. Rollo. Phenotypes, Chapman and Hall, London 1995.

    Google Scholar 

  69. H.D. Rundle, L. Nagel, J.W. Boughman, and D. Schluter. Natural selection and parallel speciation in sympatric sticklebacks, Science 287 (2000) 306–308.

    Article  Google Scholar 

  70. S.N. Salthe. Evolutionary Biology, Holt, Rinehart and Winston, New York 1972.

    Google Scholar 

  71. S.L. Reilly, R.E. Ferrell, B.A. Kottke, M.I. Kamboh, and C.F. Sing. The gender-specific apolipoprotein E genotype influence on the distribution of plasma lipids and apolipoproteins in the population of Rochester, Minnesota. I. Pleiotropic effects on means and variances. Am. J. Hum. Genet. 49 (1991) 1155–1166.

    Google Scholar 

  72. S.L. Reilly, R.E. Ferrell, B.A. Kottke, and C.F. Sing. The gender-specific apolipoprotein E genotype influence on the distribution of plasma lipids and apolipoproteins in the population of Rochester, Minnesota. II. Regression relationships with concomitants. Am. J. Hum. Genet. 51 (1992) 1311–1324.

    Google Scholar 

  73. S.L. Reilly, R.E. Ferrell, and C.F. Sing. The gender-specific apolipoprotein E genotype influence on the distribution of plasma lipids and apolipoproteins in the population of Rochester, Minnesota. III. Correlations and covariances. Am. J. Hum. Genet. 55 (1994) 1001–1018.

    Google Scholar 

  74. I. Stewart Galois Theory (2nd ed.), Chapman & Hall, London 1989.

    Google Scholar 

  75. M.L.J. Stiassny and A. Meyer. Cichlids of the Rift Lakes, Scientific American (February 1999) 64–69.

    Google Scholar 

  76. J. Su. Delayed oscillation phenomena in the Fitzhugh-Nagumo equation, J. Diff. Eq. 105 (1993) 180–215.

    Article  MATH  Google Scholar 

  77. J. Su. Effects of periodic forcing on delayed bifurcations, J. Dyn. Diff. Eq. 9 (1997) 561–625.

    Article  MATH  Google Scholar 

  78. W. Swenson and D.S. Wilson, Artificial ecosystem selection, Proc. Nat. Acad. Sci., to appear.

    Google Scholar 

  79. T. Tregenza and R.K. Butlin. Speciation without isolation, Nature 400 (1999) 311–312.

    Article  Google Scholar 

  80. A. Vanderbauwhede, Local Bifurcation and Symmetry, Habilitation Thesis, Rijksuniversiteit Gent, 1980, (also Res. Notes Math. 75, Pitman, Boston 19–82).

    Google Scholar 

  81. K. Winker. Migration and speciation, Nature 404 (2000) 36.

    Article  Google Scholar 

  82. A.P. Wolffe and M.A. Matzke. Epigenetics: regulation through repression, Science 286 (1999) 481–486.

    Article  Google Scholar 

  83. E.C. Zeeman. Stability of dynamical systems, Nonlinearity 1 (1988) 115–155.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Stewart, I., Elmhirst, T., Cohen, J. (2003). Symmetry-Breaking as an Origin of Species. In: Buescu, J., Castro, S.B.S.D., da Silva Dias, A.P., Labouriau, I.S. (eds) Bifurcation, Symmetry and Patterns. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7982-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7982-8_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9642-9

  • Online ISBN: 978-3-0348-7982-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics