Skip to main content

Exploring Human Behavior Through Isotopic Analyses: Tools, Scales, and Questions

  • Chapter
  • First Online:
Exploring Human Behavior Through Isotope Analysis

Abstract

Isotopic analyses have become an important tool in archaeological and bioarchaeological research. This chapter provides an overview of the application of both stable and radiogenic isotopic analyses to the reconstruction of past human behavior. We present an overview of the main isotope systems commonly used within this context, i.e. carbon, nitrogen, sulfur, oxygen, and strontium. We then provide a discussion of the most common tissues from which isotope ratios are obtained and highlight the importance of considering scales of analysis in research design and data interpretation. Finally, we present the general categories of social research questions for which isotopic studies have been particularly productive, such as studies of paleodiet and life-history, human-animal interactions, and human mobility and migration. Within these general categories, we discuss the individual contributions to the volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, M. (2003). Plant responses to atmospheric Sulphur. In Y. P. Abrol & A. Ahmad (Eds.), Sulphur in plants (pp. 279–293). Springer. https://doi.org/10.1007/978-94-017-0289-8_15

    Chapter  Google Scholar 

  • Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17, 431–451. https://doi.org/10.1016/0305-4403(90)90007-R

    Article  Google Scholar 

  • Ambrose, S. H., & Norr, L. (1993). Isotopic composition of dietary protein and energy versus bone collagen and apatite: Purified diet growth experiments. In J. B. Lambert & G. Grupe (Eds.), Molecular archaeology of prehistoric human bone (pp. 1–37). Springer.

    Google Scholar 

  • Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., & Baisden, W. T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles, 17, 1031. https://doi.org/10.1029/2002gb001903

    Article  Google Scholar 

  • Anthony, D. W. (1997). Prehistoric migration as social process. In J. Chapman & H. Hamerow (Eds.), Migrations and invasions in archaeological explanation. Archaeopress, BAR S664, Oxford.

    Google Scholar 

  • Arnauld, M. C., Beekman, C., & Pereira, G. (2021). Mobility and migration in ancient Mesoamerican cities. University Press of Colorado.

    Google Scholar 

  • Ayliffe, L. K., & Chivas, A. R. (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta, 54, 2603–2609.

    Article  Google Scholar 

  • Beasley, M. M., Bartelink, E. J., Taylor, L., & Miller, R. M. (2014). Comparison of transmission FTIR, ATR, and DRIFT spectra: Implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science, 46, 16–22. https://doi.org/10.1016/j.jas.2014.03.008

    Article  Google Scholar 

  • Beaumont, J., & Montgomery, J. (2016). The Great Irish Famine: Identifying starvation in the tissues of victims using stable isotope analysis of bone and incremental dentine collagen. PLoS One, 11, e0160065.

    Article  Google Scholar 

  • Bentley, R. A. (2006). Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory, 13, 135–187.

    Article  Google Scholar 

  • Berg, G. E., Chesson, L. A., Yuryang, J., Youngsoon, S., & Bartelink, E. J. (2022). A large-scale evaluation of intraperson isotopic variation within human bone collagen and bioapatite. Forensic Science International, 336, 111319. https://doi.org/10.1016/J.FORSCIINT.2022.111319

    Article  Google Scholar 

  • Borić, D., & Price, T. D. (2013). Strontium isotopes document greater human mobility at the start of the Balkan Neolithic. Proceedings of the National Academy of Sciences, 110, 3298–3303.

    Article  Google Scholar 

  • Borland, A. M., Barrera Zambrano, V. A., Ceusters, J., & Shorrock, K. (2011). The photosynthetic plasticity of crassulacean acid metabolism: An evolutionary innovation for sustainable productivity in a changing world. New Phytologist, 191, 619–633.

    Article  Google Scholar 

  • Bourdieu, P. (1977). Outline of theory of practice. Cambridge University Press.

    Book  Google Scholar 

  • Bowen, G. J. (2010). Isoscapes: Spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161–187.

    Article  Google Scholar 

  • Bowen, G. J., Wassenaar, L. I., & Hobson, K. A. (2005). Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143, 337–348.

    Article  Google Scholar 

  • Britton, K., McManus-Fry, E., Nehlich, O., Richards, M., Ledger, P. M., & Knecht, R. (2018). Stable carbon, nitrogen and Sulphur isotope analysis of permafrost preserved human hair from rescue excavations (2009, 2010) at the precontact site of Nunalleq, Alaska. Journal of Archaeological Science: Reports, 17, 950–963.

    Google Scholar 

  • Buikstra, J. E., Price, T. D., Wright, L. E., & Burton, J. H. (2004). Tombs from the Copan acropolis: A life history approach (pp. 191–212). Understanding early classic Copan.

    Google Scholar 

  • Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment, 653, 1458–1512.

    Article  Google Scholar 

  • Burleigh, R., & Brothwell, D. (1978). Studies on amerindian dogs, 1: Carbon isotopes in relation to maize in the diet of domestic dogs from early Peru and Ecuador. Journal of Archaeological Science, 5, 355–362. https://doi.org/10.1016/0305-4403(78)90054-7

    Article  Google Scholar 

  • Capo, R. C., Stewart, B. W., & Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma, 82, 197–225.

    Article  Google Scholar 

  • Casar, I., Velasco, E., Morales, P., Cienfuegos, E., & Otero, F. J. (2018). The stable isotope ecology of early (3100 B.P.) hunter-gatherers/farmers from Tula, Tamaulipas, Mexico. Isotopic evidence in bone and teeth. Journal of Archaeological Science: Reports, 21, 794–809. https://doi.org/10.1016/j.jasrep.2018.08.018

    Article  Google Scholar 

  • Chesson, L. A., Beasley, M. M., Bartelink, E. J., Jans, M. M. E., & Berg, G. E. (2021). Using bone bioapatite yield for quality control in stable isotope analysis applications. Journal of Archaeological Science: Reports, 35, 102749. https://doi.org/10.1016/j.jasrep.2020.102749

    Article  Google Scholar 

  • Cheung, C., & Szpak, P. (2021). Interpreting past human diets using stable isotope mixing models. Journal of Archaeological Method and Theory, 28, 1106–1142.

    Article  Google Scholar 

  • Chisholm, B. S., Nelson, D. E., & Schwarcz, H. P. (1982). Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science, 216, 1131–1132.

    Article  Google Scholar 

  • Comar, C. L., Russell, R. S., & Wasserman, R. H. (1957). Strontium-calcium movement from soil to man. Science, 126, 485–492.

    Article  Google Scholar 

  • Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A., Toman, B., & Verkouteren, R. M. (2006). New guidelines for δ13C measurements. Analytical Chemistry, 78, 2439–2441.

    Article  Google Scholar 

  • Craine, J. M., Brookshire, E. N. J., Cramer, M. D., Hasselquist, N. J., Koba, K., Marin-Spiotta, E., & Wang, L. (2015a). Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 396, 1–26. https://doi.org/10.1007/s11104-015-2542-1

    Article  Google Scholar 

  • Craine, J. M., Elmore, A. J., Wang, L., Augusto, L., Baisden, W. T., Brookshire, E. N. J., Cramer, M. D., Hasselquist, N. J., Hobbie, E. A., Kahmen, A., Koba, K., Kranabetter, J. M., Mack, M. C., Marin-Spiotta, E., Mayor, J. R., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Oliveira, R. S., Perakis, S. S., Peri, P. L., Quesada, C. A., Richter, A., Schipper, L. A., Stevenson, B. A., Turner, B. L., Viani, R. A. G., Wanek, W., & Zeller, B. (2015b). Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 5, 8280. https://doi.org/10.1038/srep08280

    Article  Google Scholar 

  • DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature, 317, 806–809.

    Article  Google Scholar 

  • DeNiro, M. J. (1988). Marine food sources for prehistoric coastal Peruvian camelids: Isotopic evidence and implications. In E. S. Wing & J. C. Wheeler (Eds.), Economic prehistory of the Central Andes (pp. 119–129). BAR International Series.

    Google Scholar 

  • DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495–506. https://doi.org/10.1016/0016-7037(78)90199-0

    Article  Google Scholar 

  • DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341–351.

    Article  Google Scholar 

  • Ebert, C. E., Rand, A. J., Green-Mink, K., Hoggarth, J. A., Freiwald, C., Awe, J. J., Trask, W. R., Yaeger, J., Brown, M. K., & Helmke, C. (2021). Sulfur isotopes as a proxy for human diet and mobility from the preclassic through colonial periods in the Eastern Maya lowlands. PLoS One, 16, e0254992.

    Article  Google Scholar 

  • Edwards, A. J., Chesson, L. A., Bartelink, E. J., Chau, T. H., & Berg, G. E. (2022). Using real interpretative differences to assess inter-laboratory isotopic variability due to sample preparation. Forensic Anthropology, 5, 13.

    Article  Google Scholar 

  • Eerkens, J. W., Berget, A. G., & Bartelink, E. J. (2011). Estimating weaning and early childhood diet from serial micro-samples of dentin collagen. Journal of Archaeological Science, 38, 3101–3111.

    Article  Google Scholar 

  • Ericson, J. E. (1985). Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution, 14, 503–514.

    Article  Google Scholar 

  • Ezzo, J. A. (1994). Putting the “chemistry” back into archaeological bone chemistry analysis: Modeling potential paleodietary indicators. Journal of Anthropological Archaeology, 13, 1–34.

    Article  Google Scholar 

  • Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and applications (3rd ed.). Wiley.

    Google Scholar 

  • Faure, G., & Powell, J. W. (1972). Strontium isotope geology, minerals, rocks, and inorganic materials: Monograph series of theoretical and experimental studies. Springer.

    Book  Google Scholar 

  • Fernandes, R., Nadeau, M.-J., & Grootes, P. M. (2012). Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences, 4, 291–301.

    Article  Google Scholar 

  • Fisher, L. W., Hawkins, G. R., Tuross, N., & Termine, J. D. (1987). Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. Journal of Biological Chemistry, 262, 9702–9708. https://doi.org/10.1016/S0021-9258(18)47991-4

    Article  Google Scholar 

  • France, C. A. M., Qi, H., & Kavich, G. M. (2018). Combined influence of meteoric water and protein intake on hydrogen isotope values in archaeological human bone collagen. Journal of Archaeological Science, 96, 33–44.

    Article  Google Scholar 

  • France, C. A. M., Sugiyama, N., & Aguayo, E. (2020). Establishing a preservation index for bone, dentin, and enamel bioapatite mineral using ATR-FTIR. Journal of Archaeological Science: Reports, 33, 102551.

    Google Scholar 

  • Fricke, H. C., & O’Neil, J. R. (1999). The correlation between 18O/16O ratios of meteoric water and surface temperature: Its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters, 170, 181–196.

    Article  Google Scholar 

  • Froehle, A. W., Kellner, C. M., & Schoeninger, M. J. (2010). FOCUS: Effect of diet and protein source on carbon stable isotope ratios in collagen: Follow up to Warinner and Tuross (2009). Journal of Archaeological Science, 37, 2662–2670. https://doi.org/10.1016/j.jas.2010.06.003

    Article  Google Scholar 

  • Fry, B. (2007). Stable isotope ecology. Springer.

    Google Scholar 

  • Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O’Connell, T. C., & Hedges, R. E. (2005). Nitrogen balance and δ15N: Why you’re not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry, 19, 2497–2506.

    Article  Google Scholar 

  • Giddens, A. (1979). Central problems in social theory: Action, structure, and contradiction in social analysis. University of California Press.

    Book  Google Scholar 

  • Graeber, D., & Wengrow, D. (2021). The dawn of everything: A new history of humanity. Farrar, Straus and Giroux.

    Google Scholar 

  • Guiry, E. J., & Szpak, P. (2021). Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. Journal of Archaeological Science, 132, 1–15.

    Article  Google Scholar 

  • Guo, L., Tanaka, T., Wang, D., Tanaka, N., & Murata, A. (2004). Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea. Marine Chemistry, 91, 211–226. https://doi.org/10.1016/j.marchem.2004.07.002

    Article  Google Scholar 

  • Hägg, U., & Matsson, L. (1985). Dental maturity as an indicator of chronological age: The accuracy and precision of three methods. European Journal of Orthodontics, 7, 25–34. https://doi.org/10.1093/ejo/7.1.25

    Article  Google Scholar 

  • Hallin, K. A., Schoeninger, M. J., & Schwarcz, H. P. (2012). Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: The stable isotope data. Journal of Human Evolution, 62, 59–73.

    Article  Google Scholar 

  • Hartman, G. (2011). Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Functional Ecology, 25, 122–131. https://doi.org/10.1111/j.1365-2435.2010.01782.x

    Article  Google Scholar 

  • Hedges, R. E. M., & Reynard, L. M. (2007). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science, 34, 1240–1251.

    Article  Google Scholar 

  • Hedges, R. E. M., Clement, J. G., Thomas, C. D. L., & O’Connell, T. C. (2007). Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology, 133, 808–816.

    Article  Google Scholar 

  • Hemminga, M. A., & Mateo, M. A. (1996). Stable carbon isotopes in seagrasses: Variability in ratios and use in ecological studies. Marine Ecology Progress Series, 140, 285–298.

    Article  Google Scholar 

  • Hillson, S. (1996). Dental anthropology. Cambridge University Press.

    Book  Google Scholar 

  • Hodell, D. A., Quinn, R. L., Brenner, M., & Kamenov, G. (2004). Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: A tool for tracking ancient human migration. Journal of Archaeological Science, 31, 585–601.

    Article  Google Scholar 

  • Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142, 1–6.

    Article  Google Scholar 

  • Jaouen, K., Beasley, M., Schoeninger, M., Hublin, J.-J., & Richards, M. P. (2016). Zinc isotope ratios of bones and teeth as new dietary indicators: Results from a modern food web (Koobi Fora, Kenya). Scientific Reports, 6, 1–8.

    Article  Google Scholar 

  • Jaouen, K., Herrscher, E., & Balter, V. (2017). Copper and zinc isotope ratios in human bone and enamel. American Journal of Physical Anthropology, 162, 491–500.

    Article  Google Scholar 

  • Kabalika, Z., Morrison, T. A., McGill, R. A. R., Munishi, L. K., Ekwem, D., Mahene, W. L., Lobora, A. L., Newton, J., Morales, J. M., & Haydon, D. T. (2020). Tracking animal movements using biomarkers in tail hairs: A novel approach for animal geolocating from sulfur isoscapes. Movement Ecology, 8, 1–10.

    Article  Google Scholar 

  • Katzenberg, M. A., & Waters-Rist, A. L. (2018). Stable isotope analysis: A tool for studying past diet, demography, and life history. In M. A. Katzenberg & A. L. Grauer (Eds.), Biological anthropology of the human skeleton. https://doi.org/10.1002/9781119151647.ch14

  • Killingley, J. S., & Lutcavage, M. (1983). Loggerhead turtle movement reconstructed. Estuarine Coastal Shelf Science, 18, 345–349.

    Article  Google Scholar 

  • Kluge, M., & Ting, I. P. (1978). Crassulacean acid metabolism: Analysis of an ecological adaptation. Springer.

    Book  Google Scholar 

  • Knudson, K. J., Price, T. D., Buikstra, J., & Blom, D. E. (2004). The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry, 46, 5–18.

    Article  Google Scholar 

  • Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107, 19691–19695. https://doi.org/10.1073/pnas.1004933107

    Article  Google Scholar 

  • Kohn, M. J., Schoeninger, M. J., & Valley, J. W. (1996). Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta, 60, 3889–3896. https://doi.org/10.1016/0016-7037(96)00248-7

    Article  Google Scholar 

  • Kohn, M. J., Schoeninger, M. J., & Barker, W. W. (1999). Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 63, 2737–2747.

    Article  Google Scholar 

  • Krajcarz, M. T., Krajcarz, M., Drucker, D. G., & Bocherens, H. (2019). Prey-to-fox isotopic enrichment of 34S in bone collagen: Implications for paleoecological studies. Rapid Communications in Mass Spectrometry, 33, 1311–1317.

    Article  Google Scholar 

  • Krouse, H. R., & Tabatabai, M. A. (1986). Stable sulfur isotopes. Sulfur in Agriculture, Agronomy Monograph, 27, 169–205.

    Google Scholar 

  • Krueger, H. W., & Sullivan, C. H. (1984). Models for carbon isotope fractionation between diet and bone. In Stable isotopes in nutrition (pp. 205–220). American Chemical Society. https://doi.org/10.1021/bk-1984-0258.ch014

    Chapter  Google Scholar 

  • Lee-Thorp, J. A., Sealy, J. C., & van der Merwe, N. J. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16, 585–599. https://doi.org/10.1016/0305-4403(89)90024-1

    Article  Google Scholar 

  • Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, 103, 11201–11205. https://doi.org/10.1073/pnas.0604719103

    Article  Google Scholar 

  • Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48, 385–390.

    Article  Google Scholar 

  • Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica, 48, 1689–1693.

    Article  Google Scholar 

  • Luz, B., Cormie, A. B., & Schwarcz, H. P. (1990). Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta, 54, 1723–1728. https://doi.org/10.1016/0016-7037(90)90403-8

    Article  Google Scholar 

  • Macko, S. A., Lubec, G., Teschler-Nicola, M., Andrusevich, V., & Engel, M. H. (1999). The Ice Man’s diet as reflected by the stable nitrogen and carbon isotopic composition of his hair. FASEB, 13, 559–562.

    Article  Google Scholar 

  • Mauss, M. (2013). Seasonal variations of the Eskimo: A study in social morphology. Routledge.

    Book  Google Scholar 

  • McCormack, J., Szpak, P., Bourgon, N., Richards, M., Hyland, C., Méjean, P., Hublin, J.-J., & Jaouen, K. (2021). Zinc isotopes from archaeological bones provide reliable trophic level information for marine mammals. Communications Biology, 4, 1–11.

    Google Scholar 

  • Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between 15N and animal age. Geochimica et Cosmochimica Acta, 48, 1135–1140.

    Article  Google Scholar 

  • Nehlich, O. (2015). The application of Sulphur isotope analyses in archaeological research: A review. Earth-Science Reviews, 142, 1–17. https://doi.org/10.1016/j.earscirev.2014.12.002

    Article  Google Scholar 

  • Nehlich, O., Borić, D., Stefanović, S., & Richards, M. P. (2010). Sulphur isotope evidence for freshwater fish consumption: A case study from the Danube Gorges, SE Europe. Journal of Archaeological Science, 37, 1131–1139.

    Article  Google Scholar 

  • Neymark, L. A., Premo, W. R., Mel’nikov, N. N., & Emsbo, P. (2014). Precise determination of δ88Sr in rocks, minerals, and waters by double-spike TIMS: A powerful tool in the study of geological, hydrological and biological processes. Journal of Analytical Atomic Spectrometry, 29, 65–75.

    Article  Google Scholar 

  • Nier, A. O. (1938). The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Physical Review, 54, 275–278.

    Article  Google Scholar 

  • O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328–336.

    Article  Google Scholar 

  • Pestle, W. J., Crowley, B. E., & Weirauch, M. T. (2014). Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS One, 9(7), e102844. https://doi.org/10.1371/journal.pone.0102844

  • Phillips, D., & Koch, P. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia, 130(1), 114–125.

    Article  Google Scholar 

  • Price, T. D., Burton, J. H., & Bentley, R. A. (2002). The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry, 44, 117–135.

    Article  Google Scholar 

  • Price, T. D., Burton, J. H., Fullagar, P. D., Wright, L. E., Buikstra, J. E., & Tiesler, V. (2008). Strontium isotopes and the study of human mobility in ancient Mesoamerica. Latin American Antiquity, 19, 167–180.

    Article  Google Scholar 

  • Reitsema, L. J. (2013). Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition. American Journal of Human Biology, 25, 445–456.

    Article  Google Scholar 

  • Reynard, L. M., & Hedges, R. E. M. (2008). Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction. Journal of Archaeological Science, 35, 1934–1942.

    Article  Google Scholar 

  • Reynard, L. M., Henderson, G. M., & Hedges, R. E. M. (2011). Calcium isotopes in archaeological bones and their relationship to dairy consumption. Journal of Archaeological Science, 38, 657–664.

    Article  Google Scholar 

  • Richards, M. P., Fuller, B. T., & Hedges, R. E. M. (2001). Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth and Planetary Science Letters, 191, 185–190. https://doi.org/10.1016/S0012-821X(01)00427-7

    Article  Google Scholar 

  • Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16, 153–162. https://doi.org/10.1016/S0169-5347(00)02098-X

    Article  Google Scholar 

  • Saitoh, M., Uzuka, M., & Sakamoto, M. (1970). Human hair cycle. Journal of Investigative Dermatology, 54, 65–81.

    Article  Google Scholar 

  • Schoeninger, M. J. (1979). Diet and status at Chalcatzingo: Some empirical and technical aspects of strontium analysis. American Journal of Physical Anthropology, 51, 295–310.

    Article  Google Scholar 

  • Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48, 625–639.

    Article  Google Scholar 

  • Schoeninger, M. J., DeNiro, M. J., & Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science, 1979(220), 1381–1383.

    Article  Google Scholar 

  • Schwarcz, H. P. (2000). Some biochemical aspects of carbon isotopic paleodiet studies. In S. Ambrose & M. A. Katzenberg (Eds.), Biogeochemical approaches to paleodietary analysis (pp. 189–209). Springer. https://doi.org/10.1007/0-306-47194-9_10

    Chapter  Google Scholar 

  • Schwarcz, H. P., & Schoeninger, M. J. (1991). Stable isotope analyses in human nutritional ecology. American Journal of Physical Anthropology, 34, 283–321. https://doi.org/10.1002/ajpa.1330340613

    Article  Google Scholar 

  • Schwartz, C. W., Somerville, A. D., Nelson, B. A., & Knudson, K. J. (2021). Investigating pre-Hispanic scarlet macaw origins through radiogenic strontium isotope analysis at Paquimé in Chihuahua, Mexico. Journal Anthropol Archaeol, 61, 101256.

    Article  Google Scholar 

  • Semmens, B., Ward, E., Moore, J., & Darimont, C. (2009). Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One, 4(7), e6187.

    Article  Google Scholar 

  • Sewell, W. H. (1992). A theory of structure: Duality, agency, and transformation. The American Journal of Sociology, 98, 1–29.

    Article  Google Scholar 

  • Sharpe, A. E., Kamenov, G. D., Gilli, A., Hodell, D. A., Emery, K. F., Brenner, M., & Krigbaum, J. (2016). Lead (Pb) isotope baselines for studies of ancient human migration and trade in the Maya region. PLoS One, 11, e0164871.

    Article  Google Scholar 

  • Sillen, A., Hall, G., Richardson, S., & Armstrong, R. (1998). 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: Implications for early hominid habitat preference. Geochimica et Cosmochimica Acta, 62, 2463–2473. https://doi.org/10.1016/S0016-7037(98)00182-3

    Article  Google Scholar 

  • Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380–384.

    Article  Google Scholar 

  • Somerville, A. D., & Braswell, G. E. (2016). The life, death, and afterlife of an ancient Maya king: A study of Pusilha Ruler G. Contributions in New World Archaeology, 10, 183–206.

    Google Scholar 

  • Somerville, A. D., Froehle, A. W., & Schoeninger, M. J. (2018). Environmental influences on rabbit and hare bone isotope abundances: Implications for paleoenvironmental research. Palaeogeography Palaeoclimatology Palaeoecology, 497, 91–104. https://doi.org/10.1016/j.palaeo.2018.02.008

    Article  Google Scholar 

  • Somerville, A. D., Nelson, B. A., Díaz, J. L. P., & Schoeninger, M. J. (2020). Rabbit bone stable isotope values distinguish desert ecoregions of North America: Data from the archaeological sites of Pueblo Grande, La Ferreria, and La Quemada. Journal of Archaeological Science, 113, 105063.

    Article  Google Scholar 

  • Szpak, P., Millaire, J.-F., White, C. D., & Longstaffe, F. J. (2012). Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science, 39, 3721–3740. https://doi.org/10.1016/j.jas.2012.06.035

    Article  Google Scholar 

  • Szpak, P., Metcalfe, J. Z., & Macdonald, R. A. (2017). Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports, 13, 609–616.

    Google Scholar 

  • Thornton, E. K. (2011). Reconstructing ancient Maya animal trade through strontium isotope (87Sr/86Sr) analysis. Journal of Archaeological Science, 38, 3254–3263. https://doi.org/10.1016/j.jas.2011.06.035

    Article  Google Scholar 

  • Tilly, C. (1978). Migration in modern European history. In W. McNeill & R. Adams (Eds.), Migration in modern European history (pp. 48–74). Indiana University Press.

    Google Scholar 

  • Trueman, C. N., & Tuross, N. (2002). Trace elements in recent and fossil bone apatite. In M. J. Kohn, J. Rakovan, & J. M. Hughes (Eds.), Phosphates: Geochemical, geobiological, and materials importance. Mineralogical Society of America.

    Google Scholar 

  • Turner, B. L., Kamenov, G. D., Kingston, J. D., & Armelagos, G. J. (2009). Insights into immigration and social class at Machu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. Journal of Archaeological Science, 36, 317–332.

    Article  Google Scholar 

  • Ugan, A., & Coltrain, J. (2011). Variation in collagen stable nitrogen values in black-tailed jackrabbits (Lepus californicus) in relation to small-scale differences in climate, soil, and topography. Journal of Archaeological Science, 38, 1417–1429. https://doi.org/10.1016/j.jas.2011.01.015

    Article  Google Scholar 

  • Vaiglova, P., Lazar, N. A., Stroud, E. A., Loftus, E., & Makarewicz, C. A. (2022). Best practices for selecting samples, analyzing data, and publishing results in isotope archaeology. Quaternary International. https://doi.org/10.1016/j.quaint.2022.02.027

  • van der Merwe, N. J., & Vogel, J. C. (1978). 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature, 276, 815–816.

    Article  Google Scholar 

  • Vika, E. (2009). Strangers in the grave? Investigating local provenance in a Greek Bronze Age mass burial using δ34S analysis. Journal of Archaeological Science, 36, 2024–2028.

    Article  Google Scholar 

  • Virginia, R. A., & Delwiche, C. C. (1982). Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia, 54, 317–325.

    Article  Google Scholar 

  • Vogel, J. C. (1978). Isotopic assessment of the dietary habits of ungulates. South African Journal of Science, 74, 298.

    Google Scholar 

  • Vogel, J. C., & van der Merwe, N. J. (1977). Isotopic evidence for early maize cultivation in New York state. American Antiquity, 42, 238–242. https://doi.org/10.2307/278984

    Article  Google Scholar 

  • Webb, E. C., Newton, J., Lewis, J., Stewart, A., Miller, B., Tarlton, J. F., & Evershed, R. P. (2017). Sulphur-isotope compositions of pig tissues from a controlled feeding study (Vol. 3, pp. 71–79). STAR: Science & Technology of Archaeological Research.

    Google Scholar 

  • Weiner, S., & Bar-Yosef, O. (1990). States of preservation of bones from prehistoric sites in the near east: A survey. Journal of Archaeological Science, 17, 187–196. https://doi.org/10.1016/0305-4403(90)90058-D

    Article  Google Scholar 

  • White, C. D. (1993). Isotopic determination of seasonality in diet and death from Nubian mummy hair. Journal of Archaeological Science, 20, 657–666. https://doi.org/10.1006/jasc.1993.1040

    Article  Google Scholar 

  • White, C. D., Spence, M. W., Longstaffe, F. J., & Law, K. R. (2000). Testing the nature of Teotihuacan imperialism at Kaminaljuyu using phosphate oxygen-isotope ratios. Journal of Anthropological Research, 56, 535–558.

    Article  Google Scholar 

  • White, C. D., Nelson, A. J., Longstaffe, F. J., Grupe, G., & Jung, A. (2009). Landscape bioarchaeology at Pacatnamu, Peru: Inferring mobility from 13C and 15N values of hair. Journal of Archaeological Science, 36, 1527–1537.

    Article  Google Scholar 

  • Winter, K., & Smith, J. A. C. (1996). An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. In Crassulacean acid metabolism (pp. 1–13). Springer.

    Chapter  Google Scholar 

  • Wright, L. E. (2005). Identifying immigrants to Tikal, Guatemala: Defining local variability in strontium isotope ratios of human tooth enamel. Journal of Archaeological Science, 32, 555–566.

    Article  Google Scholar 

  • Wright, L. E., & Schwarcz, H. P. (1996). Infrared and isotopic evidence for diagenesis at dos Pilas, Guatemala: Palaeodietary implications. Journal of Archaeological Science, 23, 933–944.

    Article  Google Scholar 

  • Yaemsiri, S., Hou, N., Slining, M. M., & He, K. (2010). Growth rate of human fingernails and toenails in healthy American young adults. Journal of the European Academy of Dermatology and Venereology, 24, 420–423.

    Article  Google Scholar 

  • Zvelebil, M., & Weber, A. W. (2013). Human bioarchaeology: Group identity and individual life histories–introduction. Journal of Anthropological Archaeology, 32, 275–279.

    Article  Google Scholar 

Download references

Acknowledgements

This edited volume originally began as an organized session at the 78th annual meeting of the Society for American Archaeology in Honolulu, Hawaii in 2013 (“Isotope Ecology and the Ring of Fire: Bioarchaeology in the Pacific” organized by Melanie Beasley and Andrew Somerville). We sincerely thank all of the contributing authors for their patience with the volume and for their excellent contributions. We particularly thank Margaret Schoeninger for her mentoring and for the example she has set for us. Additionally, we thank Springer Publishing for their patience and support, particularly Solomon George. We also thank Jelmer Eerkens for suggesting the idea and supporting the book project. Finally, we thank two anonymous reviewers and Corinna Most for comments on a previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie M. Beasley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somerville, A.D., Beasley, M.M. (2023). Exploring Human Behavior Through Isotopic Analyses: Tools, Scales, and Questions. In: Beasley, M.M., Somerville, A.D. (eds) Exploring Human Behavior Through Isotope Analysis. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-031-32268-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32268-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32266-2

  • Online ISBN: 978-3-031-32268-6

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics