Skip to main content

Trends and Techniques of Biomedical Text Mining: A Review

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 371))

Included in the following conference series:

Abstract

Data mining is the technique of turning raw data into useful information. This technique is used in many research fields for discovering the patterns from large dataset. This article deals with discussing the application of data mining process in the field of Biomedical Text Mining. Biomedical text mining (BTM) aims at processing the enormous volume of biological literature to extract useful information. This paper presents a review on the challenges and contributions of research works on biomedical text mining held from 2003 to 2020. Furthermore, we discussed their methodology, the datasets they utilized to evaluate work, and also their findings. Finally, we summarized the impact of their works followed by a discussion on limitations and difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachman, J.A., Gyori, B.M., Sorger, P.K.: FamPlex: a resource for entity recognition and relationship resolution of human protein families and complexes in biomedical text mining. BMC Bioinf. 19(1), 248 (2018)

    Google Scholar 

  2. Bharati, M., Ramageri, B.: Data mining techniques and applications. Indian J. Comput. Sci. Eng. 1, 12 (2010)

    Google Scholar 

  3. Chen, J., Junzhong, G.: Jointly extract entities and their relations from biomedical text. IEEE Access 7, 162818–162827 (2019)

    Article  Google Scholar 

  4. Chiang, J.-H., Hsu-Chun, Yu., Hsu, H.-J.: GIS: a biomedical text-mining system for gene information discovery. Bioinformatics 20(1), 120–121 (2004)

    Article  Google Scholar 

  5. Chukwuocha, C., Mathu, T., Raimond, K.: Design of an interactive biomedical text mining framework to recognize real-time drug entities using machine learning algorithms. Procedia Comput. Sci. 143, 181–188 (2018)

    Google Scholar 

  6. Holzinger, A., Schantl, J., Schroettner, M., Seifert, C., Verspoor, K.: Biomedical text mining: state-of-the-art, open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 271–300. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_16

    Chapter  Google Scholar 

  7. Huang, C.-C., Zhiyong, L.: Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief. Bioinform. 17(1), 132–144 (2016)

    Article  Google Scholar 

  8. Ji, M., He, Q., Han, J., Spangler, S.: Mining strong relevance between heterogeneous entities from unstructured biomedical data. Data Min. Knowl. Disc. 29(4), 976–998 (2015). https://doi.org/10.1007/s10618-014-0396-4

    Article  MathSciNet  Google Scholar 

  9. Ju, Z., Wang, J., Zhu, F.: Named entity recognition from biomedical text using SVM. In: 2011 5th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4. IEEE (2011)

    Google Scholar 

  10. Khordad, M., Mercer, R.E.: Identifying genotype-phenotype relationships in biomedical text. J. Biomed. Semant. 8(1), 57 (2017)

    Google Scholar 

  11. Kim, D., et al.: A neural named entity recognition and multi-type normalization tool for biomedical text mining. IEEE Access 7, 73729–73740 (2019)

    Google Scholar 

  12. Kirshners, A., Parshutin, S., Leja, M.: Research on application of data mining methods to diagnosing gastric cancer. In: Perner, P. (ed.) ICDM 2012. LNCS (LNAI), vol. 7377, pp. 24–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31488-9_3

    Chapter  Google Scholar 

  13. Lee, J., et al.: BIOBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Google Scholar 

  14. Leroy, G., et al.: Genescene: biomedical text and data mining. In: 2003 Joint Conference on Digital Libraries, Proceedings, pp. 116–118. IEEE (2003)

    Google Scholar 

  15. Li, F., Zhang, M., Guohong, F., Ji, D.: A neural joint model for entity and relation extraction from biomedical text. BMC Bioinf. 18(1), 1–11 (2017)

    Article  Google Scholar 

  16. Liu, M., Hu, Y., Tang, B.: Role of text mining in early identification of potential drug safety issues. In: Kumar, V.D., Tipney, H.J. (eds.) Biomedical Literature Mining. MMB, vol. 1159, pp. 227–251. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0709-0_13

    Chapter  Google Scholar 

  17. Logeswari, S., Premalatha, K.: Biomedical document clustering using ontology based concept weight. In: 2013 International Conference on Computer Communication and Informatics, pp. 1–4. IEEE (2013)

    Google Scholar 

  18. Neustein, A., Sagar Imambi, S., Rodrigues, M., Teixeira, A., Ferreira, L.: Application of text mining to biomedical knowledge extraction: analyzing clinical narratives and medical literature. In: Text Mining of Web-Based Medical Content, vol. 50. De Gruyter, Berlin (2014)

    Google Scholar 

  19. Nguyen, D.P., Ho, T.B.: Drug-drug interaction extraction from biomedical texts via relation BERT. In: 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–7. IEEE (2020)

    Google Scholar 

  20. Prasdika, P., Sugiantoro, B.: A review paper on big data and data mining concepts and techniques. IJID Int. J. Inf. Dev. 7, 33 (2018)

    Google Scholar 

  21. Rajpal, D.K., Qu, X.A., Freudenberg, J.M., Kumar, V.D.: Mining emerging biomedical literature for understanding disease associations in drug discovery. In: Kumar, V.D., Tipney, H.J. (eds.) Biomedical Literature Mining. MMB, vol. 1159, pp. 171–206. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0709-0_11

    Chapter  Google Scholar 

  22. Rodrigues, R., Costa, H., Rocha, M.: Development of a machine learning framework for biomedical text mining. In: 10th International Conference on Practical Applications of Computational Biology & Bioinformatics. AISC, vol. 477, pp. 41–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40126-3_5

    Chapter  Google Scholar 

  23. Rodriguez-Esteban, R.: Biomedical text mining and its applications. PLoS Comput. Biol. 5(12), e1000597 (2009)

    Article  Google Scholar 

  24. Shah, S., Luo, X.: Exploring diseases based biomedical document clustering and visualization using self-organizing maps. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2017)

    Google Scholar 

  25. Shatkay, H., Chen, N., Blostein, D.: Integrating image data into biomedical text categorization. Bioinformatics 22(14), e446–e453 (2006)

    Article  Google Scholar 

  26. Srihari, R., Ruiz, M.E., Srikanth, M.: Concept chain graphs: a hybrid IR framework for biomedical text mining. In Proceedings of the SIGIR 2003 Workshop on Text Analysis and Search for Bioinformatics. Citeseer (2003)

    Google Scholar 

  27. Thompson, P., et al.: The BioLexicon: a large-scale terminological resource for biomedical text mining. BMC Bioinf. 12(1), 1–29 (2011)

    Article  Google Scholar 

  28. Tsuruoka, Y., et al.: Developing a robust part-of-speech tagger for biomedical text. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 382–392. Springer, Heidelberg (2005). https://doi.org/10.1007/11573036_36

    Chapter  Google Scholar 

  29. Wu, H.-Y., Chiang, C.-W., Li, L.: Text mining for drug–drug interaction. In: Kumar, V.D., Tipney, H.J. (eds.) Biomedical Literature Mining. MMB, vol. 1159, pp. 47–75. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0709-0_4

    Chapter  Google Scholar 

  30. Xing, Y., Chengkun, W., Yang, X., Wang, W., Zhu, E., Yin, J.: ParaBTM: a parallel processing framework for biomedical text mining on supercomputers. Molecules 23(5), 1028 (2018)

    Article  Google Scholar 

  31. Ye, Z., Tafti, A.P., He, K.Y., Wang, K., He, M.M.: SparkText: biomedical text mining on big data framework. PloS One 11(9), e0162721 (2016)

    Google Scholar 

  32. Yepes, A.J., Berlanga, R.: Knowledge based word-concept model estimation and refinement for biomedical text mining. J. Biomed. Inform. 53, 300–307 (2015)

    Article  Google Scholar 

  33. Zhu, F., et al.: Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46(2), 200–211 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shamsul Arefin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rashida, M., Iffath, F., Karim, R., Arefin, M.S. (2022). Trends and Techniques of Biomedical Text Mining: A Review. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_92

Download citation

Publish with us

Policies and ethics