Skip to main content

Parallel Dilated CNN for Detecting and Classifying Defects in Surface Steel Strips in Real-Time

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

Abstract

To improve the quality of steel industry, automatic defects inspection and classification is of great importance. This paper proposed and developed DSTEELNet convolution neural network (CNN) architecture to improve detection accuracy and the required time to detect defects in surface steel strips. DSTEELNet includes three parallel stacks of convolution blocks. Each convolution block used dilated convolution that expands the receptive fields and increase the feature resolutions. The experimental results indicate significant improvements in accuracy and illustrate that the DSTEELNet achieves 97% mAP to detect defects in surface steel strips on NEU dataset and able to detect defect in single image in 22 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quality & Yield Optimization for Flat Steel Production (2017). www.isra-parsytec.com

  2. Sadeghi, M., Soltani, H., Zamanifar, K.: Application of parallel algorithm in image processing of steel surfaces for defect detection. Fen Bilimleri Dergisi (CFD) 36, 4 (2015)‏

    Google Scholar 

  3. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013)

    Google Scholar 

  4. Tian, S., Xu, K.: An algorithm for surface defect identification of steel plates based on genetic algorithm and extreme learning machine. Metals 7(8), 311 (2017)

    Article  Google Scholar 

  5. Ragab, K., Alsharay, N.: An efficient defect classification algorithm for ceramic tiles. In: 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), pp. 255–261 (2017)

    Google Scholar 

  6. Ragab, K.: Fast and parallel summed area table for fabric defect detection. Int. J. Pattern Recogn. Artif. Intell. 30(09), 1660004 (2016)

    Article  Google Scholar 

  7. Neogi, N., Mohanta, D.K., Pranab, K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 1(2014), 50 (2014)

    Article  Google Scholar 

  8. Jia, H., et al.: An intelligent real-time vision system for surface defect detection. In: Proceedings of the 17th International Conference on Pattern Recognition. ICPR 2004, vol. 3. IEEE (2004)‏

    Google Scholar 

  9. Sager, K.H., George, L.E.: Defect detection in fabric images using fractal dimension approach. In: International Workshop on Advanced Image Technology, vol. 2011 (2011)‏

    Google Scholar 

  10. Zhou, S., et al.: Classification of surface defects on steel sheet using convolutional neural networks. Materiali Tehnologije 51(1), 123–131 (2017)

    Article  Google Scholar 

  11. Ghorai, S., Mukherjee, A., Gangadaran, M., Dutta, P.K.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 62, 612–621 (2012)

    Article  Google Scholar 

  12. Ke, X.U., Lei, W., Wang, J.: Surface defect recognition of hot-rolled steel plates based on tetrolet transform. J. Mech. Eng. 52, 13 (2016)

    Google Scholar 

  13. Ahmed, K.R., AlSaeed, M., AlJumah, M.: Parallel Algorithms to detect and classify defects in Surface Steel Strips. In: The World Congress in Computer Science, Computer Engineering, and Applied Computing (CSCE 2020). Transactions on Computational Science & Computational Intelligence. Springer, New York (2020)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  15. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 48, 929–940 (2018)

    Article  Google Scholar 

  16. Tastimur, C., Yetis, H., Karaköse, M., Akin, E.: Rail defect detection and classification with real time image processing technique. Int. J. Comput. Sci. Softw. Eng. 5, 283 (2016)

    Google Scholar 

  17. Jian, C., Gao, J., Ao, Y.: Automatic surface defect detection for mobile phone screen glass based on machine vision. Appl. Soft Comput. 52, 348–358 (2017)

    Article  Google Scholar 

  18. Win, M., Bushroa, A.R., Hassan, M.A., Hilman, N.M., Ide-Ektessabi, A.: A contrast adjustment thresholding method for surface defect detection based on mesoscopy. IEEE Trans. Ind. Inform. 11, 642–649 (2015)

    Google Scholar 

  19. Kalaiselvi, T., Nagaraja, P.: A rapid automatic brain tumor detection method for MRI images using modified minimum error thresholding technique. Int. J. Imag. Syst. Technol. 1, 77–85 (2015)

    Google Scholar 

  20. Wang, L., Zhao, Y., Zhou, Y., Hao, J.: Calculation of flexible printed circuit boards (FPC) global and local defect detection based on computer vision. Circ. World 42, 49–54 (2016)

    Article  Google Scholar 

  21. Bai, X., Fang, Y., Lin, W., Wang, L., Ju, B.F.: Saliency-based defect detection in industrial images by using phase spectrum. IEEE Trans. Ind. Inform. 10, 2135–2145 (2014)

    Article  Google Scholar 

  22. Borwankar, R., Ludwig, R.: An optical surface inspection and automatic classification technique using the rotated wavelet transform. IEEE Trans. Instrum. Meas. 67, 690–697 (2018)

    Article  Google Scholar 

  23. Hu, G.H.: Automated defect detection in textured surfaces using optimal elliptical Gabor filters. Optik 126, 1331–1340 (2015)

    Article  Google Scholar 

  24. Susan, S., Sharma, M.: Automatic texture defect detection using Gaussian mixture entropy modeling. Neurocomputing 239, 232–237 (2017)

    Article  Google Scholar 

  25. Cen, Y.G., Zhao, R.Z., Cen, L.H., Cui, L.H., Miao, Z.J., Wei, Z.: Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction. Neurocomputing 149, 1206–1215 (2015)

    Article  Google Scholar 

  26. Gibert, X., Patel, V.M., Chellappa, R.: Deep multitask learning for railway track inspection. IEEE Trans. Intell. Transp. Syst. 18, 153–164 (2017)

    Article  Google Scholar 

  27. Shumin, D., Zhoufeng, L., Chunlei, L.: Adaboost learning for fabric defect detection based on hog and SVM. In Proceedings of the International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011

    Google Scholar 

  28. Chondronasios, A., Popov, I., Jordanov, I.: Feature selection for surface defect classification of extruded aluminum profiles. Int. J. Adv. Manuf. Technol. 83, 33–41 (2016)

    Article  Google Scholar 

  29. Masci, J., Meier, U., Fricout, G., Schmidhuber, J.: Multi-scale pyramidal pooling network for generic steel defect classification. In: Proceedings of the Int. Joint Conf. on Neural Networks, Dallas, TX, USA, 4–9 August 2013

    Google Scholar 

  30. Natarajan, V., Hung, T.Y., Vaikundam, S., Chia, L.T.: Convolutional networks for voting-based anomaly classification in metal surface inspection. In: Proceedings of the IEEE International Conference on Industrial Technology, Toronto, ON, Canada, 22–25 March 2017

    Google Scholar 

  31. Wang, T., Chen, Y., Qiao, M., Snoussi, H.: A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 94, 3465–3471 (2018)

    Article  Google Scholar 

  32. Cha, Y.J., et al.: Autonomous structural visual inspection using region—Based deep learning for detecting multiple damage types. Comput. Aided Civ. Infrastruct. Eng. 33, 731–747 (2018)

    Article  Google Scholar 

  33. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS 2015 Proceedings (2015)

    Google Scholar 

  34. Tao, X., Zhang, D., Ma, W., Liu, X., Xu, D.: Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 8, 1575 (2018)

    Article  Google Scholar 

  35. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  36. Xu, H., Warde-Farley, D., Ozair, S., Courville A., Yoshua, K.: Generative Adversarial Networks. arXiv:1406.2661 (2014)

  37. Goodfellow, I., Pouget-Abadie, J. Mirza, M.: Genserative Adversarial Networks. arXiv:1406.266 (2014)

  38. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 (2016)

  39. Luo, W., et al.: Understanding the effective receptive field in deep convolutional neural networks. arXiv preprint arXiv:1701.04128 (2017)

  40. Kingma, D. P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–13 (2015)

    Google Scholar 

  41. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  42. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2020). https://doi.org/10.1109/TIM.2019.2915404

    Article  Google Scholar 

  43. Mang Xiao, M., Jiamh, G., Li, L.X., Li, Y.: An evoslutionary classifier for steel surface defects with small sample set. EURASIP J. Image Video Process. 48, 236 (2017). https://doi.org/10.1186/s13640-017-0197-y

    Article  Google Scholar 

  44. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  45. Lv, X., Duan, F., Jiang, J.-J., Fu, X., Gan, L.: Deep metallic surface defect detection: the new benchmark and detection network. Sensors 20, 1562 (2020). https://doi.org/10.3390/s20061562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled R. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, K.R. (2022). Parallel Dilated CNN for Detecting and Classifying Defects in Surface Steel Strips in Real-Time. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_11

Download citation

Publish with us

Policies and ethics