Skip to main content

Transition from In-Class to Online Lectures During a Pandemic

  • Conference paper
  • First Online:
Visions and Concepts for Education 4.0 (ICBL 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1314))

Abstract

A global pandemic is underway that has required an overwhelming number of universities and educational institutions across the world to stop all in-person classes. This has mostly been implemented following social distancing guidelines by various governments, some of whom have enforced a complete lockdown of the affected areas. The universities are facing a situation wherein it is believed that this pandemic will eventually be overcome, but if the classes are not conducted and curriculum not completed, the students' career progress will be severely disrupted. In a bid to address this, classes were abruptly shifted to an online format, and the transition happened with a span of 2–4 days. In this work, we present an approach that has been followed to implement this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beichner, R.: The student-centered activities for large enrollment undergraduate programs (SCALE-UP) project. Res. Based Reform Univ. Phys. 1(1), 2–39 (2007)

    Google Scholar 

  2. Burrowes, P.A.: A student-centered approach to teaching general biology that really works: lord’s constructivist model put to a test. Am. Biol. Teach. 65, 491–502 (2003)

    Article  Google Scholar 

  3. Srinivasan S., Centea D.: An active learning strategy for programming courses. In: Auer M., Tsiatsos, T. (eds.) Mobile Technologies and Applications for the Internet of Things. IMCL 2018. Advances in Intelligent Systems and Computing, vol. 909, pp. 327–336 (2019)

    Google Scholar 

  4. Cummings, K., Marx, J., Ronald, T., Dennis, K.: Evaluating innovation in studio physics. Am. J. Phys. 67, S38–S44 (1999)

    Article  Google Scholar 

  5. Sidhu, G., Srinivasan, S.: An intervention-based active-learning strategy to enhance student performance in mathematics. Int. J. Pedagog. Teach. Educ. 2, 277–288 (2018)

    Google Scholar 

  6. Srinivasan, S., Centea, D.: Applicability of principles of cognitive science in active learning pedagogies. In: Proceedings of the 13th International Workshop Active Learning in Engineering. (1ed.) Aalborg Universitetsforlag, pp. 99–104 (2015)

    Google Scholar 

  7. Wage, K.E., Buck, J.R., Wright, C.H.G., Welch, T.B.: The signals and systems concept inventory. IEEE Trans. Educ. 48, 448–461 (2005)

    Article  Google Scholar 

  8. Prince, M.: Does active learning work? a review of the research. J. Eng. Educ. 93, 223–231 (2004)

    Article  Google Scholar 

  9. Srinivasan, S., Rajabzadeh, A.R., Centea, D.: A project-centric learning strategy in biotechnology. In: Auer, M., Hortsch, H., Sethakul, P. (eds.) The Impact of the 4th Industrial Revolution on Engineering Education, ICL 2019, Advances in Intelligent Systems and Computing, vol. 1134, pp. 830–838. Springer, Cham (2020)

    Google Scholar 

  10. Farrell, J.J., Moog, R.S., Spencer, J.N.: A Guided-inquiry general chemistry course. J. Chem. Educ. 76, 570 (1999)

    Article  Google Scholar 

  11. Lewis, S.E., Lewis, J.E.: Departing from lectures: an evaluation of a peer-led guided inquiry alternative. J. Chem. Educ. 82, 135 (2005)

    Article  Google Scholar 

  12. Capon, N., Kuhn, D.: What’s so good about problem-based learning? Cogn. Instr. 22, 61–79 (2004)

    Article  Google Scholar 

  13. Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development, 2nd ed., Pearson Education Inc. New Jersey (2015).

    Google Scholar 

  14. Centea, D., Srinivasan, S.: Enhancing student learning through problem based learning. In: Guerra, A., Rodriguez, F.J., Kolmos, A., Reyes, I.P. (eds.) PBL, Social Progress and Sustainability, Aalborg: Aalborg Universitetsforlag. (International Research Symposium on PBL), pp. 376–385 (2017)

    Google Scholar 

  15. Dochy, F., Segers, M., Van den Bossche, P., Gijbels, D.: Effects of problem-based learning: a meta-analysis. Learn. Instr. 13, 533–568 (2003)

    Article  Google Scholar 

  16. Centea, D., Srinivasan, S.: Assessment methodology in a PBL environment. Int. J. Innov. Res. Educ. Sci. 6(6), 364–372 (2016)

    Google Scholar 

  17. Sidhu, G., Srinivasan, S., Centea, D.: Implementation of a problem based learning environment for first year engineering mathematics. In: Guerra, A., Rodriguez, F.J., Kolmos, A., Reyes, I.P. (eds.) PBL, Social Progress and Sustainability, Aalborg: Aalborg Universitetsforlag. (International Research Symposium on PBL), pp. 201–208 (2017)

    Google Scholar 

  18. Muhammad, N., Srinivasan, S.: A problem solving based approach to learn engineering mathematics. In: Auer, M., Hortsch, H., Sethakul, P. (eds.) The Impact of the 4th Industrial Revolution on Engineering Education. ICL 2019. Advances in Intelligent Systems and Computing, vol. 1134, pp. 839–848 (2020)

    Google Scholar 

  19. Olusegun, B.S.: Constructivism learning theory: a paradigm for teaching and learning. ISOR J. Res. Method Educ. 5(6), 66–70 (2015)

    Google Scholar 

  20. Tam, M.: Constructivism, instructional design, and technology: implications for transforming distance learning. Educ. Technol. Soc. 3(2), 50–60 (2000)

    Google Scholar 

  21. Srinivasan, S., Muhammad, N.: Implementation of a course in computational modeling of biological systems in an undergraduate engineering program. Int. J. Eng. Educ. 36(3), 857–864 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshasai Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muhammad, N., Srinivasan, S. (2021). Transition from In-Class to Online Lectures During a Pandemic. In: Auer, M.E., Centea, D. (eds) Visions and Concepts for Education 4.0. ICBL 2020. Advances in Intelligent Systems and Computing, vol 1314. Springer, Cham. https://doi.org/10.1007/978-3-030-67209-6_33

Download citation

Publish with us

Policies and ethics