Skip to main content

Chemical Composition of Insect Surface Waxes: Biological Functions and Analytics

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

The cuticle, which covers the body of an insect, serves many different functions, e.g., reception of signals from the environment, protection against desiccation and reduction of the penetration of chemicals, and protection from attack by microorganisms. The cuticle also provides motor functions analogous to the role of the bone in mammals. Waxes are present on the surface of the cuticle. These compounds are called “cuticular lipids,” though apart from just lipids, there are many other groups of chemical compounds. Surface waxes protect insects against water loss and play an important role in chemical communication with other insects. Some of them also exhibit antifungal and antibacterial properties. Moreover, the quantitative and qualitative profile of surface waxes can be used in chemotaxonomy. The analysis of insect surface waxes consists of the identification of individual chemical compounds and their quantitative determination. The surface waxes of insects consist of nonpolar compounds; hence the methodology of chemical analysis is typical for hydrophobic analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Szafranek, B., Maliński, E., Nawrot, J., et al. (2001). In Vitro effects of cuticular lipids of the aphids Sitobion avenae, Hyalopterus pruni and Brevicoryne brassicae on growth and sporulation of the Paecilomyces fumosoroseus and Beauveria bassiana. ARKIVOC, 2(3), 81–94.

    Article  Google Scholar 

  2. Hebanowska, E., Maliński, E., Dubis, E., et al. (1990). The cuticular hydrocarbons of the larvae of Anagasta kuehniella Z. Comparative Biochemistry and Physiology, 95B, 699–703.

    CAS  Google Scholar 

  3. Gołębiowski, M., Maliński, E., Nawrot, J., et al. (2007). Identification of the cuticular lipid composition of the Western Flower Thrips Frankliniella occidentalis. Comparative Biochemistry and Physiology, 147B, 288–292.

    Article  Google Scholar 

  4. Gołębiowski, M., Paszkiewicz, M., Grubba, A., et al. (2012). Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines; application of HPLC-LLSD and GC/MS-SIM. Bulletin of Entomological Research, 102, 453–460.

    Article  PubMed  Google Scholar 

  5. Buckner, J. S., Mardaus, M. C., & Nelson, D. R. (1996). Cuticular lipid composition of Heliothis virescens and Helicoverpa zea pupae. Comparative Biochemistry and Physiology. B, 114, 207–216.

    Article  Google Scholar 

  6. Blomquist, G. J., Chu, A. J., & Remaley, S. (1980). Biosynthesis of wax in the honeybee, Apis mellifera L. Insect Biochemistry, 10, 313–321.

    Article  CAS  Google Scholar 

  7. Howard, R. W., & Lord, J. C. (2003). Cuticular lipids of the booklouse, Liposcelis bostrychophila: Hydrocarbons, aldehydes, fatty acids, and fatty acid amides. Journal of Chemical Ecology, 29, 615–627.

    Article  CAS  PubMed  Google Scholar 

  8. Said, I., Costagliola, G., Leoncini, I., & Rivaul, C. (2005). Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). Journal of Insect Physiology, 51, 995–1003.

    Article  CAS  PubMed  Google Scholar 

  9. Dubis, E., Maliński, E., Dubis, A., et al. (1987). Sex-dependent composition of cuticular hydrocarbons of the Colorado potato beetle, Leptinotarsa decemlineata say. Comparative Biochemistry & Physiology. Part A, 87, 839–843.

    Article  Google Scholar 

  10. Dubis, E., Maliński, E., Hebanowska, E., et al. (1987). The composition of cuticular hydrocarbons of the Khapra beetles, Trogoderma granarium. Comparative Biochemistry & Physiology, 88B, 911–915.

    CAS  Google Scholar 

  11. Gibbs, A., & Pomonis, J. G. (1995). Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology, 112B, 243–249.

    Article  CAS  Google Scholar 

  12. Eckstrand, I. A., & Richardson, R. H. (1980). Comparison of some water balance characteristics in several Drosophila species which differ in habitat. Envent Electronics, 9, 716–720.

    Article  Google Scholar 

  13. Nelson, D. R., & Blomquist, J. G. (1995). Insect Waxes. w: Waxes: Chemistry, Molecular Biology and Functions (red. R.J. Hamilton). The Oily Press, Ltd., Dundee: 1–90.

    Google Scholar 

  14. Blomquist, G. J., & Bagnères, A.-G. (2010). (red.), Insect hydrocarbons. Biology, biochemistry, and chemical ecology. Cambridge University Press.

    Book  Google Scholar 

  15. El-Sayed, A. M. (2019). The pherobase: Database of pheromones and semio-chemicals. http://www.pherobase.com. 2003–2019 (dostęp 18.05.2019).

  16. Wickham, J. D., Lu, W., Zhang, L. W., et al. (2016). Likely aggregation-sex pheromones of the invasive beetle Callidiellum villosulum, and the related Asian species Allotraeus asiaticus, Semanotus bifasciatus, and Xylotrechus buqueti (Coleoptera: Cerambycidae). Journal of Economic Entomology, 109, 2243–2246.

    Article  PubMed  Google Scholar 

  17. Szczerbowski, D., Torrens, G. G., Rodrigues, M. A. C. M., et al. (2016). (1R,6R)-2,2,6-Trimethyl-3-oxabicyclo[4.2.0]octan-4-one, a new monoterpene lactone produced by males of the cocoa borer Conotrachelus humeropictus (Col.: Curculionidae). Tetrahedron Letters, 57, 2842–2844.

    Article  CAS  Google Scholar 

  18. Uebel, E. C., Schwarz, M., Lusby, W. R., et al. (1978). Cuticular non-hydrocarbons of the female housefly and their evaluation as mating stimulants. Lloydia, 41, 63–67.

    CAS  Google Scholar 

  19. Suiter, D. R., Carlson, D. A., Patterson, R. S., & Koehler, P. G. (1996). Host–location kairomone from Periplaneta americana (L.) for parasitoid Aprostocetus hagenowii (Ratzeburg). Journal of Chemical Ecology, 22, 637–651.

    Article  CAS  PubMed  Google Scholar 

  20. Post, D. C., Mohamed, M. A., Coppel, H. C., & Jeanne, R. L. (1984). Identification of ant repellent allomone produced by social wasp Polistes fuscatus (Hymenoptera: Vespidae). Journal of Chemical Ecology, 10, 1799–1807.

    Article  CAS  Google Scholar 

  21. Bestmann, H. J., Haak, U., & Kern, E. (1995). 2,4-dimethyl-5-hexanolide, a trail pheromone component of the carpenter ant Camponotus herculeanus. Naturwissenschaften, 82, 142–144.

    CAS  Google Scholar 

  22. Raina, A. K., Stadelbacher, E. A., & Ridgway, R. L. (1989). Pheromone composition and pheromone-mediated male behavior of laboratory-reared and wild Heliothis zea (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 15, 1259–1265.

    Article  CAS  PubMed  Google Scholar 

  23. McFareane, J. E. (1984). Repellent effect of volatile fatty acids of frass on larvae of German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). Journal of Chemical Ecology, 10, 1617–1622.

    Article  Google Scholar 

  24. Harborn, J. B. (1997). Ekologia biochemiczna. PWN.

    Google Scholar 

  25. Nojima, S., Shimomura, K., Honda, H., et al. (2007). Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus. Journal of Chemical Ecology, 33, 923–933.

    Article  CAS  PubMed  Google Scholar 

  26. Attygalle, A. B., Meinwald, J., Liebherr, J. K., & Eisner, T. (1991). Sexual dimorphism in the defensive secretion of a carabid beetle. Experientia, 47, 296–299.

    Article  CAS  PubMed  Google Scholar 

  27. Veith, H. J., Weiss, J., & Koeniger, N. (1978). A new alarm pheromone (2-decen-1-yl acetate) isolated from the stings of Apis dorsata and Apis florea (Hymenoptera: Apidae). Experientia, 34, 423–424.

    Article  CAS  Google Scholar 

  28. Heath, R. R., & Landolt, P. J. (1988). The isolation, identification and synthesis of the alarm pheromone of Vespula squamosa (Drury) (Hymenoptera: Vespidae) and associated behavior. Experientia, 44, 82–83.

    Article  CAS  Google Scholar 

  29. Mendel, Z. (1988). Attraction of Orthotomicus erosus and Pityogenes calcaratus to a synthetic aggregation pheromone of Ips typographus. Phytoparasitica, 16, 109–117.

    Article  Google Scholar 

  30. Cross, J. H., West, J. R., Silverstein, R. M., et al. (1982). Trail pheromone of the leaf-cutting ant, Acromyrmex octospinosus (Reich), (Formicidae: Myrmicinae). Journal of Chemical Ecology, 8, 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan, D., Brand, J. M., Mori, K., & Keegans, S. J. (2004). The trail pheromone of the ant Crematogaster castanea. Chemoecology, 14, 119–120.

    Article  CAS  Google Scholar 

  32. Tokoro, M., Takahashi, M., & Yamaoka, R. (1994). (Z,E,E)-dodecatrien-1-ol: A minor component of trail pheromone of termite, Coptotermes formosanus Shiraki. Journal of Chemical Ecology, 20, 199–215.

    Article  CAS  PubMed  Google Scholar 

  33. Dunkelblum, E., Snir, R., Gothilf, S., & Harpaz, I. (1987). Identification of sex pheromone components from pheromone gland volatiles of the tomato looper, Plusia chalcites (Esp.). Journal of Chemical Ecology, 13, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  34. Bestmann, H. J., Attygalle, A. B., Schwarz, J., et al. (1988). Identification of sex pheromone components of Spodoptera sunia Guenee (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 14, 683–690.

    Article  CAS  PubMed  Google Scholar 

  35. St. Leger, R. J. (1991). Integument as a barrier to microbial infections. In K. Binnington & A. Retnakaran (Eds.), Physiology of the insect epidermis (pp. 284–306). CSIRO.

    Google Scholar 

  36. Koidsumi, K. (1957). Antifungal action of cuticular lipids in insects. Journal of Insect Physiology, 1, 40–51.

    Article  Google Scholar 

  37. Smith, R. J., & Grula, E. A. (1982). Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrate Pathology, 39, 15–22.

    Article  CAS  Google Scholar 

  38. Saito, T., & Aoki, J. (1983). Toxicity of free fatty acids on the larval surfaces of two lepidopterous insects towards Beauveria bassiana (BALS.) VUILL and Paecilomyces fumosoroseus (Wize) Brown et Smith (Deuteromycetes: Moniliales). Applied Entomology and Zoology, 18, 225–233.

    Article  CAS  Google Scholar 

  39. Gołębiowski, M., Cerkowniak, M., Boguś, M. I., et al. (2013). Free fatty acids in the cuticular and internal lipids of Calliphora vomitoria and their antimicrobial activity. Journal of Insect Physiology, 59, 416–429.

    Article  PubMed  Google Scholar 

  40. Gołębiowski, M., Cerkowniak, M., Dawgul, M., et al. (2013). The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols in Calliphora vomitoria. Parasitology, 140, 972–985.

    Article  PubMed  Google Scholar 

  41. Gołębiowski, M., Dawgul, M., Kamysz, W., et al. (2012). The antimicrobial activity of the alcohols from Musca domestica. The Journal of Experimental Biology, 215, 3419–3428.

    PubMed  Google Scholar 

  42. Urbanek, A., Szadziewski, R., Stepnowski, P., et al. (2012). Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). Journal of Insect Physiology, 58, 1265–1276.

    Article  CAS  PubMed  Google Scholar 

  43. Boucias, D. G., & Pendland, J. C. (1991). Attachment of mycopathogens to cuticle. The initial event of mycoses in arthropod hosts. In G. T. Cole & H. C. Hoch (Eds.), The fungal spore and disease initiation in plants and animals (pp. 101–128). Plenum.

    Chapter  Google Scholar 

  44. Lockey, K. H. (1988). Lipids of the insect cuticle: Origin, composition and function. Comparative Biochemistry and Physiology, 89B, 595–645.

    CAS  Google Scholar 

  45. Nelson, D. R., Guershon, M., & Gerling, D. (1998). The surface wax composition of the exuviae and adults of Aleyrodes singularis. Comparative Biochemistry and Physiology, 119B, 655–665.

    Article  CAS  Google Scholar 

  46. Chen, N., Bai, Y., Fan, Y.-L., & Liu, T.-S. (2017). Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One, 12, e0184243.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cerkowniak, M., Boguś, M. I., Włóka, E., et al. (2017). Comparison of the volatile compounds of Dermestes maculatus and Dermestes ater pupae: Application of headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). ISJ-Invertebrate Survival Journal, 14, 303–311.

    Google Scholar 

  48. Gołębiowski, M., Cerkowniak, M., Ostachowska, A., et al. (2016). Determination of cuticular and internal fatty acids of Chorthippus brunneus males and females using HPLC-LLSD and GC-MS. Biomedical Chromatography, 30, 1318–1323.

    Article  PubMed  Google Scholar 

  49. Vrkoslav, V., Muck, A., Cvacka, J., & Svatos, A. (2009). MALDI imaging of neutral cuticular lipids in insects and plants. Journal of the American Society for Mass Spectrometry, 21, 220–231.

    Article  PubMed  Google Scholar 

  50. Gutierrez, A. C., Gołębiowski, M., Pennisi, M., et al. (2015). Cuticle fatty acid composition and differential susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Ascomycota, Hypocreales). Journal of Economic Entomology, 108, 752–760.

    Article  CAS  PubMed  Google Scholar 

  51. Gołębiowski, M., Boguś, M. I., Paszkiewicz, M., & Stepnowski, P. (2011). Cuticular lipids of insects as potential biofungicides: Methods of lipid composition analysis. Analytical and Bioanalytical Chemistry, 399, 3177–3191.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Stepnowski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gołębiowski, M., Stepnowski, P. (2022). Chemical Composition of Insect Surface Waxes: Biological Functions and Analytics. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics