Skip to main content

Thermal Exchange Metaheuristic Optimization Algorithm

  • Chapter
  • First Online:
Advances in Metaheuristic Algorithms for Optimal Design of Structures

Abstract

This chapter consists of two parts. In the first part, the recently developed optimization algorithm based on Newton’s law of cooling is presented, which is called Thermal Exchange Optimization (TEO) algorithm [1]. In the second part, the improved version of TEO is named as Improved TEO and abbreviated as ITEO [2] is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–68

    Article  Google Scholar 

  2. Kaveh A, Dadras A, Bakhshpoori T (2018) Improved thermal exchange optimization algorithm for discrete optimization of skeletal structures. Smart Struct Syst 21(3):263–278

    Google Scholar 

  3. Newton I (1809) A scale of the degrees of heat. Philosoph Trans Royal Soc Lond Abridged 4:572–575

    Google Scholar 

  4. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Sci 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  5. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184

    Article  MathSciNet  Google Scholar 

  6. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  7. Mirjalili SA, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  8. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  9. Storn R, Price K (1997) Differential evolutionary simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  Google Scholar 

  10. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  Google Scholar 

  11. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

    Article  Google Scholar 

  12. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Indust 41:113–127

    Article  Google Scholar 

  13. Lee KS, Geem Z (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  14. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problem. Eng Appl Artific Intell 20:89–99

    Article  Google Scholar 

  15. Montes EM, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    Article  MathSciNet  Google Scholar 

  16. Coello CAC (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Environ Syst 17:319–346

    Article  Google Scholar 

  17. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York, USA

    Google Scholar 

  18. Gandomi A et al (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  19. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85

    Article  Google Scholar 

  20. Huang FZ, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  21. Wang Y, Cai Z, Zhou Y (2009) Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization. Int J Numer Methods Eng 77(11):1501–1534

    Article  MathSciNet  Google Scholar 

  22. Montemurro M, Vincenti A, Vannucci P (2013) The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Comput Methods Appl Mech Eng 256:70–87

    Article  MathSciNet  Google Scholar 

  23. Thanedar PB, Vanderplaats GN (1995) Survey of discrete variable optimization for structural design. J Struct Eng 121:301–305

    Article  Google Scholar 

  24. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  Google Scholar 

  25. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  26. Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85

    Google Scholar 

  27. Davison JH, Adams PF (1974) Stability of braced and unbraced frames. J Struct Div 100(2):319–334

    Google Scholar 

  28. Kaveh A, Bakhshpoori T (2013) Optimum design of space trusses using cuckoo search algorithm with lévy flights. Iranian J Sci Technol Trans Civil Eng 37(1):1–15

    Google Scholar 

  29. Kaveh A, Bakhshpoori T (2016) An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures. Comput Struct 177:218–228

    Google Scholar 

  30. Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput Struct 153:137–147

    Article  Google Scholar 

  31. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist competitive algorithm. Comput Struct 88(21–22):1220–1229

    Article  Google Scholar 

  32. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures. Appl Soft Comput 12(1):382–393

    Article  Google Scholar 

  33. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Des 43(3):303–315

    Article  Google Scholar 

  34. Rueda Torres J, Erlich I (2016) Solving the CEC2016 Real-Parameter Single Objective Optimization Problems through MVMO-PHM: Technical Report

    Google Scholar 

  35. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102:49–63

    Article  Google Scholar 

  36. Yeniay Ö (2005) Penalty function methods for constrained optimization with genetic algorithms. Math Comput Appl 10(1):45–56

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaveh, A. (2021). Thermal Exchange Metaheuristic Optimization Algorithm. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-59392-6_23

Download citation

Publish with us

Policies and ethics