Skip to main content

Nanomaterials: Recent Advances for Hydrogen Production

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The increment in global energy requirement and the consequences associated with the global warming due to emissions of greenhouse gases derived of fossil fuels have promoted the development of newly alternative energy sources, characterized by being clean and friendly to the environment. In this respect, hydrogen plays an important role in the generation of both renewable and clean energy. Currently, nanotechnology shows an important role in the design of nanomaterials to produce renewable energy. Nanomaterials have attracted great interest in recent years, due to their unusually mechanical, electrical, electronic, optical, magnetic, and surface properties. These attributes have had significant implication in the production, storage, and utilization of energy. This article focuses an overview of nanomaterials that have been designed for the production, storage, and use of hydrogen. The topics include, among other, nanomaterials for both photocatalytic (PC) and photoelectrochemical (PEC) water splitting, solid-state hydrogen storage, and proton exchange membrane fuel cells (PEMFCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

CB:

Conduction band

CNF:

Carbon nanofiber

EB:

Emeraldine base

HER:

Hydrogen evolution reaction

ICPs:

Intrinsically conducting polymers

LB:

Leucoemeraldine base

MOF:

Metal organic framework

MWCNT:

Multi-walled carbon nanotubes

NHE:

Normal hydrogen electrode

NR:

Nanorod

NT:

Nanotube

NW:

Nanowires

ORR:

Oxygen reduction reaction

PA:

Poly-acetylene

PANI:

Polyaniline

PB:

Pernigraniline base

PC:

Photocatalytic

PEC:

Photoelectrocatalytic

PEMFC:

Proton Exchange Membrane Fuel Cell

PPP:

Poly(p-pheneylene)

PPV:

Poly(p-phenylenevinylene)

PPY:

Polypyrrole

PTh:

Polythiophene

STH:

Solar-to-hydrogen conversion efficiencies

SWCNT:

Single-walled carbon nanotubes

VB:

Valence band

References

  1. Dawood F, Anda M, Shafiullah GMM (2020) Hydrogen production for energy: an overview. Int J Hydrog Energy 45:3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  2. Kothari R, Buddhi D, Sawhney RL (2004) Sources and technology for hydrogen production: a review. Int J Glob Energy Issues 21:154–178. https://doi.org/10.1504/ijgei.2004.004707

    Article  Google Scholar 

  3. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  4. Zhang Y, Heo Y-JJ, Lee J-HHJ-WW et al (2018) Photocatalytic hydrogen evolution via water splitting: a short review. Catalysts 8:655. https://doi.org/10.3390/catal8120655

    Article  CAS  Google Scholar 

  5. Jing D, Guo L, Zhao L et al (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrog Energy 35:7087–7097. https://doi.org/10.1016/j.ijhydene.2010.01.030

    Article  CAS  Google Scholar 

  6. Mao SS, Shen S, Guo L (2012) Nanomaterials for renewable hydrogen production, storage and utilization. Prog Nat Sci Mater Int 22:522–534. https://doi.org/10.1016/j.pnsc.2012.12.003

    Article  Google Scholar 

  7. Marepally BC, Ampelli C, Genovese C et al (2019) Production of solar fuels using CO2. In: Albonetti S, Perathoner S, Quadrelli EA (eds) Horizons in sustainable industrial chemistry and catalysis. Elsevier, Amsterdam, pp 7–30

    Chapter  Google Scholar 

  8. Reddy CV, Reddy KR, Shetti NP et al (2019) Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting – a review. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.02.109

  9. Kahng S, Yoo H, Kim JH (2020) Recent advances in earth-abundant photocatalyst materials for solar H2 production. Adv Powder Technol 31:11–28. https://doi.org/10.1016/j.apt.2019.08.035

    Article  CAS  Google Scholar 

  10. Reza Gholipour M, Dinh CT, Béland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7:8187–8208. https://doi.org/10.1039/c4nr07224c

    Article  CAS  Google Scholar 

  11. Joy J, Mathew J, George SC (2018) Nanomaterials for photoelectrochemical water splitting – review. Int J Hydrog Energy 43:4804–4817. https://doi.org/10.1016/j.ijhydene.2018.01.099

    Article  CAS  Google Scholar 

  12. Yao B, Zhang J, Fan X et al (2019) Surface engineering of nanomaterials for photo-electrochemical water splitting. Small 15:1803746. https://doi.org/10.1002/smll.201803746

    Article  CAS  Google Scholar 

  13. Qiu Y, Pan Z, Chen H et al (2019) Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull 64:1348–1380. https://doi.org/10.1016/j.scib.2019.07.017

    Article  CAS  Google Scholar 

  14. Rasouli F, Rouhollahi A, Ghahramanifard F (2019) Fabrication of silver nanoparticles decorated zinc oxide nanotubes by electrodeposition technique for photoelectrochemical water splitting. Mater Sci Semicond Process 93. https://doi.org/10.1016/j.mssp.2018.08.004

  15. Wang T, Lv R, Zhang P et al (2014) Au nanoparticles sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7. https://doi.org/10.1039/C4NR03735A

  16. Fu S, Zhang B, Hu H et al (2018) ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting. Cat Sci Technol 8:2789–2793. https://doi.org/10.1039/C8CY00656C

    Article  CAS  Google Scholar 

  17. Mao Y, Yang H, Chen J et al (2014) Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy 6:10–18. https://doi.org/10.1016/j.nanoen.2014.02.008

    Article  CAS  Google Scholar 

  18. Sun X, Li Q, Jiang J, Mao Y (2014) Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. Nanoscale 6:8769–8780. https://doi.org/10.1039/C4NR01146E

    Article  CAS  Google Scholar 

  19. Huang J, Yue P, Wang L et al (2019) A review on tungsten-trioxide-based photoanodes for water oxidation. Chin J Catal 40:1408–1420. https://doi.org/10.1016/S1872-2067(19)63399-1

    Article  CAS  Google Scholar 

  20. Li L, Zhao X, Pan D, Li G (2017) Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for photoelectrocatalytic overall water splitting. Chin J Catal 38:2132–2140. https://doi.org/10.1016/S1872-2067(17)62948-6

    Article  CAS  Google Scholar 

  21. Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proc Combust Inst 34:2187–2195. https://doi.org/10.1016/j.proci.2012.06.122

    Article  CAS  Google Scholar 

  22. Nayak A, Sohn Y, Pradhan D (2017) Facile green synthesis of WO3 H2O Nanoplates and WO3 nanowires with enhanced Photoelectrochemical performance. Cryst Growth Des 17. https://doi.org/10.1021/acs.cgd.7b00886

  23. Rani BJ, Kumar MP, Ravichandran S et al (2019) WO3 nanocubes for photoelectrochemical water-splitting applications. J Phys Chem Solids 134:149–156. https://doi.org/10.1016/j.jpcs.2019.06.005

    Article  CAS  Google Scholar 

  24. Rong Y-Q, Yang X-F, Zhang W-D, Yu Y-X (2019) Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting. Mater Lett 246:161–164. https://doi.org/10.1016/j.matlet.2019.03.044

    Article  CAS  Google Scholar 

  25. Kalanoor BS, Seo H, Kalanur SS (2018) Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: a review. Mater Sci Energy Technol 1:49–62. https://doi.org/10.1016/j.mset.2018.03.004

    Article  Google Scholar 

  26. Liu C, Luo H, Xu Y et al (2020) Synergistic cocatalytic effect of ultra-thin metal-organic framework and Mo-dopant for efficient photoelectrochemical water oxidation on BiVO4 photoanode. Chem Eng J 384:123333. https://doi.org/10.1016/j.cej.2019.123333

    Article  CAS  Google Scholar 

  27. Luo H, Liu C, Xu Y et al (2019) An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. Int J Hydrog Energy 44:30160–30170. https://doi.org/10.1016/j.ijhydene.2019.09.199

    Article  CAS  Google Scholar 

  28. Lee D, Choi K-S (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3. https://doi.org/10.1038/s41560-017-0057-0

  29. Xu S, Fu D, Song K et al (2018) One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J 349:368–375. https://doi.org/10.1016/j.cej.2018.05.100

    Article  CAS  Google Scholar 

  30. Han HS, Shin S, Kim DH et al (2018) Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ Sci 11:1299–1306. https://doi.org/10.1039/C8EE00125A

    Article  CAS  Google Scholar 

  31. Praveenkumar M, Ravichandran S, Ravi G et al (2019) BiVO4 nanostructures for Photoelectrochemical (PEC) solar water splitting applications. J Nanosci Nanotechnol 19:7427–7435. https://doi.org/10.1166/jnn.2019.16642

    Article  CAS  Google Scholar 

  32. Fu Z, Jiang T, Liu Z et al (2014) Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim Acta 129:358–363. https://doi.org/10.1016/j.electacta.2014.02.132

    Article  CAS  Google Scholar 

  33. Xie Y, Ju Y, Toku Y, Morita Y (2018) Synthesis of a single-crystal Fe2O3 nanowire array based on stress-induced atomic diffusion used for solar water splitting. R Soc Open Sci 5:0–9. https://doi.org/10.1098/rsos.172126

  34. Xie X, Yang Y, Xiao YH et al (2018) Enhancement of photoelectrochemical activity of Fe2O3 nanowires decorated with carbon quantum dots. Int J Hydrog Energy 43:6954–6962. https://doi.org/10.1016/j.ijhydene.2018.02.099

    Article  CAS  Google Scholar 

  35. Cheng F, Li X (2020) Effects of in situ Co or Ni doping on the photoelectrochemical performance of hematite nanorod arrays. Appl Sci 10. https://doi.org/10.3390/app10103567

  36. Qi X, She G, Wang M et al (2013) Electrochemical synthesis of p-type Zn-doped α-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chem Commun 49:5742–5744. https://doi.org/10.1039/C3CC40599K

    Article  CAS  Google Scholar 

  37. Ravi G, Yuvakkumar R, Ravichandran S et al (2018) Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew Energy 133. https://doi.org/10.1016/j.renene.2018.10.067

  38. Lee SL, Chang C-JJ (2019) Recent Progress on metal sulfide composite nanomaterials for photocatalytic hydrogen production. Catalysts 9:457. https://doi.org/10.3390/catal9050457

    Article  CAS  Google Scholar 

  39. Reza Gholipour M, Dinh C-TT, Béland F, Do T-OO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7:8187–8208. https://doi.org/10.1039/C4NR07224C

    Article  CAS  Google Scholar 

  40. Cao S, Yan X, Kang Z et al (2016) Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy 24:25–31. https://doi.org/10.1016/j.nanoen.2016.04.001

    Article  CAS  Google Scholar 

  41. Rokade A, Rondiya S, Date A et al (2017) Electrochemical synthesis of Core-shell ZnO/CdS nanostructure for photocatalytic water splitting application. Energy Procedia 110:121–127. https://doi.org/10.1016/j.egypro.2017.03.116

    Article  CAS  Google Scholar 

  42. Zhang J, Wang Y, Jin J et al (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced Photostability of Core/Shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5:10317–10324. https://doi.org/10.1021/am403327g

    Article  CAS  Google Scholar 

  43. Zhao W, Liu J, Ding Z et al (2020) Optimal synthesis of platinum-free 1D/2D CdS/MoS2 (CM) heterojunctions with improved photocatalytic hydrogen production performance. J Alloys Compd 813:152234. https://doi.org/10.1016/j.jallcom.2019.152234

    Article  CAS  Google Scholar 

  44. Di T, Zhang L, Cheng B et al (2020) CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.03.032

  45. Liu M, Li F, Sun Z et al (2014) Noble-metal-free photocatalysts MoS2–graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chem Commun 50:11004–11007. https://doi.org/10.1039/C4CC04653F

    Article  CAS  Google Scholar 

  46. Luo B, Liu G, Wang L (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920. https://doi.org/10.1039/c6nr00546b

    Article  CAS  Google Scholar 

  47. Rosman NN, Mohamad Yunus R, Jeffery Minggu L et al (2018) Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. Int J Hydrog Energy 43:18925–18945. https://doi.org/10.1016/j.ijhydene.2018.08.126

    Article  CAS  Google Scholar 

  48. Zhang X, Fei H, Wu Z, Wang D (2019) A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten 1:101–109. https://doi.org/10.1007/s42864-019-00008-7

    Article  Google Scholar 

  49. Ganguly P, Harb M, Cao Z et al (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4:1687–1709. https://doi.org/10.1021/acsenergylett.9b00940

    Article  CAS  Google Scholar 

  50. US DOE Hydrogen storage. In: Rep. US DOE-Off. Energy Effic. Renew. Energy. https://www.energy.gov/eere/fuelcells/metal-hydride-storage-materials. Accessed 2 Jul 2020

  51. Sepehri S, Cao G (2013) Nanostructured materials for hydrogen storage. In: Nanotechnology for the energy challenge. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 259–275

    Chapter  Google Scholar 

  52. Niemann MU, Srinivasan SS, Phani AR et al (2008) Nanomaterials for hydrogen storage applications: a review. J Nanomater 2008. https://doi.org/10.1155/2008/950967

  53. Schneemann A, White JL, Kang S et al (2018) Nanostructured metal hydrides for hydrogen storage. Chem Rev 118:10775–10839. https://doi.org/10.1021/acs.chemrev.8b00313

    Article  CAS  Google Scholar 

  54. US DOE Metal Hydride Storage Materials. In: Rep. US DOE-Off. Energy Effic. Renew. Energy. https://www.energy.gov/eere/fuelcells/metal-hydride-storage-materials

  55. Sadhasivam T, Kim HT, Jung S et al (2017) Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review. Renew Sust Energ Rev 72:523–534. https://doi.org/10.1016/j.rser.2017.01.107

    Article  CAS  Google Scholar 

  56. Li J, Li B, Shao H et al (2018) Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts:8. https://doi.org/10.3390/catal8020089

  57. Zhang Q, Huang Y, Xu L et al (2019) Highly dispersed MgH2 nanoparticle–graphene Nanosheet composites for hydrogen storage. ACS Appl Nano Mater 2:3828–3835. https://doi.org/10.1021/acsanm.9b00694

    Article  CAS  Google Scholar 

  58. Zhang Q, Huang Y, Ma T et al (2020) Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage. J Alloys Compd 825:153953. https://doi.org/10.1016/j.jallcom.2020.153953

    Article  CAS  Google Scholar 

  59. Liu Y, Zou J, Meng F et al (2013) Study on hydrogen storage properties of Mg nanoparticles confined in carbon aerogels. Int J Hydrog Energy 38:5302–5308. https://doi.org/10.1016/j.ijhydene.2013.02.012

  60. Mohan M, Sharma VK, Kumar EA, Gayathri V (2019) Hydrogen storage in carbon materials – a review. Energy Storage 1:e35. https://doi.org/10.1002/est2.35

    Article  CAS  Google Scholar 

  61. Xia Y, Yang Z, Zhu Y (2013) Porous carbon-based materials for hydrogen storage: advancement and challenges. J Mater Chem A 1:9365–9381. https://doi.org/10.1039/c3ta10583k

    Article  CAS  Google Scholar 

  62. Jurczyk MU, Kumar A, Srinivasan S, Stefanakos E (2007) Polyaniline-based nanocomposite materials for hydrogen storage. Int J Hydrog Energy 32:1010–1015. https://doi.org/10.1016/j.ijhydene.2006.07.012

    Article  CAS  Google Scholar 

  63. Senthilkumar B, Ashok P, Shanmugavani A (2018) Polyaniline-based nanocomposites for hydrogen storage. In: Polymer-based nanocomposites for energy and environmental applications. Elsevier, pp 219–238

    Google Scholar 

  64. Kim BH, Hong W, Lee S et al (2010) Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites. Int J Hydrog Energy 35:1300–1304. https://doi.org/10.1016/j.ijhydene.2009.11.089

    Article  CAS  Google Scholar 

  65. Karatepe N, Yuca N, Şenkal BF (2013) Synthesis of carbon-based Nano materials for hydrogen storage. Fullerenes Nanotub Carbon Nanostruct 21:31–46. https://doi.org/10.1080/1536383X.2011.574323

    Article  CAS  Google Scholar 

  66. Felseghi RA, Carcadea E, Raboaca MS et al (2019) Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 12. https://doi.org/10.3390/en12234593

  67. Song M, Song Y, Sha W et al (2020) Recent advances in non-precious transition metal/nitrogen-doped carbon for oxygen reduction electrocatalysts in PEMFCs. Catalysts:10. https://doi.org/10.3390/catal10010141

  68. Kang SY, Kim HJ, Chung YH (2018) Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction. Nano Converg 5. https://doi.org/10.1186/s40580-018-0144-3

  69. Vedarajan R, Prithi J, Rajalakshmi N (2020) 6 – advanced nanocatalysts for fuel-cell technologies. In: Naushad M, Saravanan R, Raju KB (eds) Materials today. Elsevier, pp 165–191

    Google Scholar 

  70. Barakat NAM, El-Deen AG, Ghouri ZK, Al-Meer S (2018) Stable N-doped & FeNi-decorated graphene non-precious electrocatalyst for oxygen reduction reaction in acid medium. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22114-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Nadia Aguilera González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aguilera González, E.N., Estrada-Flores, S., Martínez-Luévanos, A. (2021). Nanomaterials: Recent Advances for Hydrogen Production. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_33

Download citation

Publish with us

Policies and ethics