Skip to main content

Halophytes

A Phytoremediation Tool for Salt-Affected Soils with Special Reference to Indian Subcontinent

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Saline soil is an increasing global problem. Augmented levels of salt content in agricultural soils impart negative influences on germination, plant growth, and reproducibility. It also affects various biological processes, viz., nutrient balance, photosynthesis, respiration, membrane properties, metabolism, cellular homeostasis, enzymatic activity, and hormone regulation. All these changes lead to the assembly of reactive oxygen species (ROS) and in extreme stress plant death. This chapter shows how to face this problem using halophytes. Halophytes have some physiological adaptations which increases their endurance to survive in brine environments. Phytoremediation basically describes a practice where plants and associated soil microorganisms are used to decrease the heavy metal toxicity in the environment. It can also be exploited to expel the organic pollutants. Some halophytes used in this process are Atriplex triangularis, Suaeda glauca, Suaeda vera, Phragmites australis, and Tecticornia pergranulata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelly, C., Öztürk, M., Ashraf, M., & Grignon, C. (2007). Biosaline agriculture and high salinity tolerance (p. 361). Basel/Boston/Berlin: Birkhäuser.

    Google Scholar 

  • Abhilash, P. C., Powell, J. R., Singh, H. B., & Singh, B. K. (2012). Plant-microbe interactions: Novel applications for exploitation in multipurpose remediation technologies. Trends in Biotechnology, 30, 416–420.

    CAS  PubMed  Google Scholar 

  • Abiala, M. A., Abdelrahman, M., Burritt, D. J., & Tran, L.-S. P. (2018). Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degradation and Development, 29(10), 3812–3822. https://doi.org/10.1002/ldr.3095.

    Article  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881.

    CAS  PubMed  Google Scholar 

  • Ayoub, A., Schomaker, M., & Scharpenseel, H. (1990). Soils on a warmer earth: Effects of expected climate change on soil processes, with emphasis on the tropics and sub-tropics (p. 273). Amsterdam: Elsevier.

    Google Scholar 

  • Bader, N., Alsharif, E., Nassib, M., Alshelmani, N., & Alalem, A. (2019). Phytoremediation potential of Suaeda vera for some heavy metals in roadside soil in Benghazi, Libya. Asian Journal of Green Chemistry, 3(1), 1–124)., 82–90. https://doi.org/10.22034/ajgc.2018.67060.

    Article  CAS  Google Scholar 

  • Bedair, H., Shaltout, K., Ahmed, D., Sharaf El-Din, A., & El-Fahhar, R. (2020). Characterization of the wild trees and shrubs in the Egyptian Flora. The Egyptian Journal of Botany, 60(1), 147–168.

    Google Scholar 

  • Breckle, S. W. (2002). Salinity, halophytes and salt affected natural ecosystems. In Salinity: Environment – Plants – Molecules (pp. 53–77). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Cambrollé, J., Mancilla-Leytón, J. M., Muñoz-Vallés, S., Luque, T., & Figueroa, M. E. (2012a). Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere, 86(9), 867–874.

    Google Scholar 

  • Cambrollé, J., Mancilla-Leytón, J. M., Muñoz-Vallés, S., Luque, T., & Figueroa, M. E. (2012b). Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Marine pollution bulletin, 64(4), 721–728.

    Google Scholar 

  • Cambrollé, J., Redondo-Gómez, S., Mateos-Naranjo, E., & Figueroa, M. E. (2008). Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin, 56(12), 2037–2042.

    Google Scholar 

  • Choukr-Allah, R. (1996). The potential of halophytes in the development and rehabilitation of arid and semiarid zones. In R. Choukr-Allah, C. V. Malcolm, & A. Hamdy (Eds.), Halophytes and biosaline agriculture (pp. 3–16). New York: Marcel Dekker.

    Google Scholar 

  • Clemente, R., Walker, D. J., Pardo, T., Martinez-Fernandez, D., & Bernal, M. P. (2012). The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Journal of Hazardous Materials, 223–224, 63–71. https://doi.org/10.1016/j.jhazmat.2012.04.048.

    Article  CAS  PubMed  Google Scholar 

  • Couto, T., Duarte, B., Barroso, D., Caçador, I., & Marques, J. C. (2013). Halophytes as sources of metals in estuarine systems with low levels of contamination. Functional Plant Biology, 40(9), 931–939.

    Google Scholar 

  • Devil, S., Nadwal, A., Angrish, R., Arya, S., Kumar, N., & Sharma, S., (2016). Phytoremediation potential of some halophytic species for soil salinity. 18(7):693–6

    Google Scholar 

  • Doty, S. L., Shang, Q. T., Wilson, A. M., Moore, A. L., Newman, L. A., & Strand, S. E. (2007). Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian P450 2E1. Proceedings of the National Academy of Sciences of the United States of America, 97, 6287–6291.

    Google Scholar 

  • Duarte, B., Caetano, M., Almeida, P. R., Vale, C., & Cacador, I., (2010) Accumulation and biological cycling of heavy metal in four salt marsh species: from Tagus estuary (Portugal). Environ Pollut 158:1661–1668

    Google Scholar 

  • Duarte, B., Santos, D., & Caçador, I. (2013). Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. Functional Plant Biology, 40(9), 922–930.

    Google Scholar 

  • Erakhrumen, A. A. (2007). Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Reviews, 2, 151–156.

    Google Scholar 

  • Fall, D., Bakhoum, N., & Fall, F. (2018). Effect of peanut shells amendment on soil properties and growth of seedlings of Senegalia senegal (L.) Britton, Vachellia seyal (Delile) P. Hurter, and Prosopis juliflora (Swartz) DC in salt-affected soils. Annals of Forest Science, 75, 32.

    Google Scholar 

  • FAO. (2015). Understanding mountain soils: A contribution from mountain areas to the international year of soils 2015 (R. Romeo, A. Vita, S. Manuelli, E. Zanini, M. Freppaz, & S. Stanchi, Eds., pp. 30–42). Rome: FAO.

    Google Scholar 

  • Ghnaya, T., Nouairi, I., Slama, I., Messedi, D., Grignon, C., Adbelly, C., & Ghorbel, M. H. (2005). Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology, 162, 1133–1140.

    CAS  PubMed  Google Scholar 

  • Ghnaya, T., Slama, I., Messedi, D., Grignon, C., Ghorbel, M. H., & Adbelly, C. (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: Consequences on growth. Chemosphere, 67, 72–79.

    CAS  PubMed  Google Scholar 

  • Gies, E. (2017). Soil salinization threatens California farms. Food and farm discussion lab.

    Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255.

    Google Scholar 

  • Greipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 2, 7.

    Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., Teixeira da Silva, J. A., & Fujita, M. (2012). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In V. Bandi, A. K. Shanker, C. Shanker, & M. Mandapaka (Eds.), Crop stress and its management: Perspectives and strategies (pp. 261–316). Berlin: Springer.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujitaetal, M. (2013). Enhancing plant productivity under salt stress-relevance of poly-omics. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt stress in plants: Omics, signaling and responses (pp. 113–156). Berlin: Springer.

    Google Scholar 

  • Hbirkou, C., Martius, C., Khamzina, A., Lamers, J. P. A., Welp, G., & Amelung, W. (2011). Reducing topsoil salinity and raising carbon stocks through afforestation in Khorezm, Uzbekistan. Journal of Arid Environments, 75, 146–155.

    Google Scholar 

  • Hoffman, G. J., & Shannon, M. J. (1986). Relating plant performance and soil salinity. Reclamation and Revegetation Research, 5, 211–225.

    Google Scholar 

  • Jing, C., Xu, Z., Zou, P., Tang, Q., Li, Y., You, X., & Zhang, C. (2019). Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China. Applied Soil Ecology, 134, 1–7. https://doi.org/10.1016/j.apsoil.2018.10.009.

    Article  Google Scholar 

  • Jordan, F. L., Robin-Abbott, M., Maier, R. M., & Glenn, E. P. (2002). A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 21(12), 2698–2704. https://doi.org/10.1002/etc.5620211224.

    Article  CAS  PubMed  Google Scholar 

  • Kachout, S. S., Mansoura, A. B., Mechergui, R., Leclerc, J. C., Rejeb, M. N., & Ouerghi, Z. (2012). Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Journal of the Science of Food and Agriculture, 92(2), 336–342. https://doi.org/10.1002/jsfa.4581.

    Article  CAS  PubMed  Google Scholar 

  • Karakas, S., Cullu, M., & Dikilitas, M. (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turkish Journal of Agriculture and Forestry, 41, 183–190.

    CAS  Google Scholar 

  • Kinghorn, R. R. F. (1983). An introduction to the physics and chemistry of petroleum. New York: Wiley.

    Google Scholar 

  • Laffont-Schwob, I., d’Enjoy-Weinkammerer, G., Pricop, A., Prudent, P., Masotti, V., & Rabier, J. (2011). Evaluation of a potential candidate for heavy metal phytostabilization in polluted sites of the Mediterranean littoral (SE Marseille): Endomycorrhizal status, fitness biomarkers and metal content of Atriplex halimus spontaneous populations. Ecological Questions, 14, 89–90.

    Google Scholar 

  • Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.

    Google Scholar 

  • Lefèvre, I., Marchal, G., Edmond Ghanem, M., Correal, E., & Lutts, S. (2010). Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. Journal of Plant Physiology, 167(5), 365–374.

    PubMed  Google Scholar 

  • Lokhande, V. H., Gor, B. K., Desai, N. S., Nikam, T. D., & Suprasanna, P. (2013). Sesuvium portulacastrum, a plant for drought, salt stress, and fixation, food and phytoremediation. A review. Agronomy for Sustainable Development, 33, 329–348.

    CAS  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158.

    CAS  PubMed  Google Scholar 

  • Manchanda, G., & Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30(5), 595–618.

    CAS  Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environmental Science and Pollution Research International, 16(7), 844–854.

    CAS  PubMed  Google Scholar 

  • Manousaki, E., Kokkali, F., & Kalogerakis, N. (2009). Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(6), 877–883.

    Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.

    CAS  Google Scholar 

  • Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non saline and saline soils. Environmental Research, 106, 326–332.

    CAS  PubMed  Google Scholar 

  • McMillion, L. R. (1965). Hydrologic aspects of disposal of oil-field brines in Texas. Groundwater, 4, 36–42.

    Google Scholar 

  • Mesjasz-Przybylowicz, J., Nakonieczny, M., Migula, P., Augustyniak, M., Tarnawska, M., Reimold, W. U., Koeberl, C., Przybylowicz, W., & Glowacka, E. (2004). Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica, 46, 75–85.

    Google Scholar 

  • Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal enriched mine waste: A review. Global Journal of Environmental Research, 4, 135–150.

    CAS  Google Scholar 

  • Munn, D. A., & Stewart, R. (1989). Effect of oil well brine on germination and seedling growth of several crops. Ohio Journal of Science, 4, 92–94.

    Google Scholar 

  • Murphy, E. C., Kehew, A., Groenewold, G., & Beal, W. (1988). Leachate generated by an oil-and-gas brine pond site in North Dakota. Ground Water, 4, 31–38.

    Google Scholar 

  • Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204, 316–324.

    Google Scholar 

  • Orcutt, D. M., & Nilsen, E. T. (2000). Phytotoxicity and soil pollution: Heavy metals and xenobiotics. In The physiology of plants under stress, soil and biotic factors (pp. 481–517). New York: Wiley.

    Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyperaccumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  PubMed  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H.-W., Ranieri, A., Abdelly, C., & Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.

    CAS  PubMed  Google Scholar 

  • Rabier, J., Laffont-Schwob, P., Pricop, A., et al. (2014). Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water, Air and Soil Pollution, 225, Article 1993.

    Google Scholar 

  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5, 961–970.

    CAS  Google Scholar 

  • Ramadan, T. (1998). Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. The New Phytologist, 139, 273–281.

    CAS  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.

    CAS  Google Scholar 

  • Reboreda, R., & Caçador, I. (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution, 146(1), 147–154.

    CAS  PubMed  Google Scholar 

  • Reboreda, R., & Caçador, I. (2008). Enzymatic activity in the rhizosphere of Spartina maritima: Potential contribution for phytoremediation of metals. Marine Environmental Research, 65, 77–84.

    CAS  PubMed  Google Scholar 

  • Redondo-Gómez, S., Mateos-Naranjo, E., & Andrades-Moreno, L. (2010). Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials, 184(1–3), 299–307.

    PubMed  Google Scholar 

  • Redondo-Gómez, S., Andrades-Moreno, L., Mateos-Naranjo, E., Parra, R., Valera-Burgos, J., & Aroca, R. (2011). Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. Journal of Experimental Botany, 62(15), 5521–5530.

    Google Scholar 

  • Rozema, J., & Flowers, T. (2008). Crops for a salinized world. Science, 322, 1478–1480.

    CAS  PubMed  Google Scholar 

  • Rozema, J., DeCae, R., Niazi, B., Abdullah, Z., Zaheer, H., Ahmad, R., Linders, H., & Broekmann, R. (1995). Salt tolerant crops, halophytes and crop cultivation in salt affected arable land. In M. A. Khan & I. A. Ungar (Eds.), Biology of salt tolerant plants (pp. 380–387). Karachi: University of Karachi.

    Google Scholar 

  • Sakai, Y., Ma, Y., Xu, C., Wu, H., Zhu, W., & Yang, J. (2012). Phytodesalination of a salt-affected soil with four halophytes in China. Journal of Arid Land Studies, 22, 17–20.

    Google Scholar 

  • Shaygan, M., Mulligan, D., & Baumgartl, T. (2018). The potential of three halophytes (Tecticornia pergranulata, Sclerolaena longicuspis, and Frankenia serpyllifolia) for the rehabilitation of brine-affected soils. Land Degradation and Development, 29(6), 2002–2014. https://doi.org/10.1002/ldr.2954.

  • Shevyakova, N. I., Netronina, I. A., Aronova, E. E., & Kuznetsov, V. V. (2003). Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russian Journal of Plant Physiology, 50, 678–685.

    CAS  Google Scholar 

  • Singh, S. (2012). Phytoremediation: A sustainable alternative for environmental challenges. International Journal of Green and Herbal Chemistry, 1, 133–139.

    CAS  Google Scholar 

  • Thomas, J. C., Malick, F. K., Endreszl, C., Davies, E. C., & Murray, K. S. (1998). Distinct response to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum, 102, 310–317.

    Google Scholar 

  • Treshow, M. (1970). Environment and plant response. New York: McGraw-Hill Book.

    Google Scholar 

  • Van Oosten, M. J., & Maggio, A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany, 111, 135–146. https://doi.org/10.1016/j.envexpbot.2014.11.010.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., Van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.

    CAS  PubMed  Google Scholar 

  • Vishnoi, S. R., & Srivastava, P. N. (2008). Phytoremediation-green for environmental clean. In: The 12th world lake conference, pp. 1016–1021.

    Google Scholar 

  • von Sengbusch, P. (2003). “Halophytes” Botanik online. University of Hamburg.

    Google Scholar 

  • Wahla, I. H., & Kirkham, M. B. (2008). Heavy metal displacement in salt-water irrigated soil during phytoremediation. Environmental Pollution, 155, 271–283.

    CAS  PubMed  Google Scholar 

  • Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus: Its biology and uses. Journal of Arid Environments, 100/101, 111–121.

    Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174, 1–8.

    CAS  PubMed  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20.

    Google Scholar 

  • Yadav, R., Arora, P., Kumar, S., & Chaudhury, A. (2010). Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology, 19, 1574–1588.

    CAS  PubMed  Google Scholar 

  • Young, M. A., Rancier, D. G., Roy, J. L., Lunn, S. R., Armstrong, S. A., & Headley, J. V. (2011). Technical note: Seeding conditions of the halophyte Atriplex patula for optimal growth on a salt impacted site. International Journal of Phytoremediation, 13, 674–680.

    PubMed  Google Scholar 

  • Yun, K., Rutter, A., & Zeeb, B. A. (2019). Composting of halophyte Phragmites australis following phytoaccumulation of chloride from a cement kiln dust (CKD)-contaminated landfill. Waste Management, 87, 119–124.

    CAS  PubMed  Google Scholar 

  • Zaier, H., Ghnaya, T., Ghabriche, R., Chmingui, W., Lakhdar, A., Lutts, S., & Abdelly, C. (2004). EDTA-enhanced phytoremediation of lead-contaminated soil by the halophyte Sesuvium portulacastrum. Environmental Science and Pollution Research International, 21(12), 7607–7615.

    Google Scholar 

  • Zaier, H., Ghnaya, T., Ben Rejeb, K., Lakhdar, A., Rejeb, S., & Jemal, F., (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour Technol 101(11):3978–3983

    Google Scholar 

  • Jiang, J., Wu, L., Li, N., Luo, Y., Liu, L., Zhao, Q., Zhang, L., & Christie, P., (2010). Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology 46: 18– 26.

    Google Scholar 

  • Zhao, K. F. (1991). Desalinisation of saline soils by Suaeda salsa. Plant and Soil, 135, 303–309.

    CAS  Google Scholar 

  • Zhou, M., Han, R., Ghnaya, T., & Lutts, S. (2018). Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere, 209, 892–900.

    CAS  Google Scholar 

  • Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167, 527–533.

    CAS  Google Scholar 

  • Zorrig, W., Rabhi, M., Ferchichi, S., Smaoui, A., & Abdelly, C. (2012). Phytodesalination: A solution for salt-affected soils in arid and semi-arid regions. Journal of Arid Land Studies, 22, 299–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mushtaq, W., Bedair, H., Shakeel, A. (2020). Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics