Skip to main content

Mechanisms of Spliceosomal Assembly

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

Pre-mRNA splicing is a key step for generating mature protein-coding mRNA. An RNA–protein complex known as the spliceosome carries out the chemistry of pre-mRNA splicing. However, several pre-spliceosomal intermediates are assembled on the pre-mRNA before the formation of the catalytically activated spliceosome. The progression to the activated spliceosome involves a cascade of the rearrangement events of the RNA–RNA, RNA–protein, and protein–protein interactions within the pre-spliceosomal intermediates. These rearrangements generate multiple combinatorial interactions of the spliceosome with the substrate, which enhances the accuracy of the splice site selection. Each rearrangement also represents a step at which splicing can potentially be subjected to regulation. The aim of this chapter is to provide an overview of the components of the spliceosome and their rearrangements along the spliceosome assembly pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 74:3171–3175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Brody E, Abelson J (1985) The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228:963–967

    Article  PubMed  CAS  Google Scholar 

  3. Jurica MS, Moore MJ (2002) Capturing splicing complexes to study structure and mechanism. Methods 28:336–345

    Article  PubMed  CAS  Google Scholar 

  4. Luhrmann R, Stark H (2009) Structural mapping of spliceosomes by electron microscopy. Curr Opin Struct Biol 19:96–102

    Article  PubMed  CAS  Google Scholar 

  5. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  PubMed  CAS  Google Scholar 

  6. Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  7. House AE, Lynch KW (2006) An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nat Struct Mol Biol 13:937–944

    Article  PubMed  CAS  Google Scholar 

  8. Sharma S, Kohlstaedt LA, Damianov A, Rio DC, Black DL (2008) Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 15:183–191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Schneider M, Will CL, Anokhina M, Tazi J, Urlaub H et al (2010) Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol Cell 38:223–235

    Article  PubMed  CAS  Google Scholar 

  10. Nilsen TW (1994) RNA-RNA interactions in the spliceosome: unraveling the ties that bind. Cell 78:1–4

    Article  PubMed  CAS  Google Scholar 

  11. Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Z, Licklider LJ, Gygi SP, Reed R (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419:182–185

    Article  PubMed  CAS  Google Scholar 

  13. Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Behzadnia N, Golas MM, Hartmuth K, Sander B, Kastner B et al (2007) Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J 26:1737–1748

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL et al (2006) Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 26:5528–5543

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8:426–439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Grote M, Wolf E, Will CL, Lemm I, Agafonov DE et al (2010) Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol 30:2105–2119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Schwer B (2008) A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell 30:743–754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Schwer B, Guthrie C (1992) A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J 11:5033–5039

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  21. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schneider M, Hsiao HH, Will CL, Giet R, Urlaub H et al (2010) Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nat Struct Mol Biol 17:216–221

    Article  PubMed  CAS  Google Scholar 

  24. Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K (2009) Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458:475–480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Dybkov O, Will CL, Deckert J, Behzadnia N, Hartmuth K et al (2006) U2 snRNA-protein contacts in purified human 17S U2 snRNPs and in spliceosomal A and B complexes. Mol Cell Biol 26:2803–2816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J et al (2010) The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 24:1434–1447

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chiou, Nt., Lynch, K.W. (2014). Mechanisms of Spliceosomal Assembly. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics