Skip to main content

Application of In-Fusion™ Cloning for the Parallel Construction of E. coli Expression Vectors

  • Protocol
  • First Online:
DNA Cloning and Assembly Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1116))

Abstract

In-Fusion™ cloning is a flexible DNA ligase-independent cloning technology that has wide-ranging uses in molecular biology. In this chapter we describe the protocols used in the OPPF-UK to design and construct expression vectors using In-Fusion™. Our method for small scale expression screening in Escherichia coli of constructs generated by In-Fusion™ is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berrow NS, Bussow K, Coutard B et al (2006) Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr D Biol Crystallogr 62: 1218–1226

    Article  PubMed  Google Scholar 

  2. Savitsky P, Bray J, Cooper CD et al (2010) High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 172:3–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Graslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  4. Irwin CR, Farmer A, Willer DO et al (2012) In-fusion(R) cloning with vaccinia virus DNA polymerase. Methods Mol Biol 890:23–35

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton MD, Nuara AA, Gammon DB et al (2007) Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase. Nucleic Acids Res 35:143–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Aslandis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  Google Scholar 

  7. Haun RS, Serventi IM, Moss J (1992) Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. Biotechniques 13:515–518

    CAS  PubMed  Google Scholar 

  8. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  PubMed  Google Scholar 

  9. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4: 251–256

    Article  CAS  PubMed  Google Scholar 

  10. Jeong JY, Yim HS, Ryu JY et al (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345

    Article  CAS  PubMed  Google Scholar 

  12. Gibson DG, Smith HO, Hutchison CA III et al (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901–903

    Article  CAS  PubMed  Google Scholar 

  13. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  PubMed Central  PubMed  Google Scholar 

  14. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression vectors using high-throughput In-Fusion PCR cloning. Methods Mol Biol 498:75–90

    Article  CAS  PubMed  Google Scholar 

  15. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55:29–37

    Article  CAS  PubMed  Google Scholar 

  16. Chen JH, Jung JW, Wang Y et al (2010) Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res 9:6479–6489

    Article  CAS  PubMed  Google Scholar 

  17. Howland SW, Poh CM, Renia L (2011) Directional, seamless, and restriction enzyme-free construction of random-primed complementary DNA libraries using phosphorothioate-modified primers. Anal Biochem 416:141–143

    Article  CAS  PubMed  Google Scholar 

  18. Nettleship JE, Ren J, Rahman N et al (2008) A pipeline for the production of antibody fragments for structural studies using transient expression in HEK 293T cells. Protein Expr Purif 62:83–89

    Article  CAS  PubMed  Google Scholar 

  19. Au K, Berrow NS, Blagova E et al (2006) Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis. Acta Crystallogr D Biol Crystallogr 62:1267–1275

    Article  CAS  PubMed  Google Scholar 

  20. Marsischky G, LaBaer J (2004) Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res 14:2020–2028

    Article  CAS  PubMed  Google Scholar 

  21. Zhu B, Cai G, Hall EO et al (2007) In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43:354–359

    Article  CAS  PubMed  Google Scholar 

  22. Zhou B, Donnelly ME, Scholes DT et al (2009) Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83:10309–10313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sleight SC, Bartley BA, Lieviant JA et al (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4:12

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sleight SC, Bartley BA, Lieviant JA et al (2010) In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Res 38:2624–2636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Alzari PM, Berglund H, Berrow NS et al (2006) Implementation of semi-automated cloning and prokaryotic expression screening: the impact of SPINE. Acta Crystallogr D Biol Crystallogr 62:1103–1113

    Article  PubMed  Google Scholar 

  26. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358

    Article  CAS  PubMed  Google Scholar 

  27. Marblestone JG, Edavettal SC, Lim Y et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  Google Scholar 

  28. Ohana RF, Encell LP, Zhao K et al (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr Purif 68:110–120

    Article  CAS  PubMed  Google Scholar 

  29. Chudakov DM, Matz MV, Lukyanov S et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Schwabe JW, Banayo E et al (1997) Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc Natl Acad Sci U S A 94:2278–2283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Alexandrov A, Vignali M, LaCount DJ et al (2004) A facile method for high-throughput co-expression of protein pairs. Mol Cell Proteomics 3:934–938

    Article  CAS  PubMed  Google Scholar 

  32. Scheich C, Kummel D, Soumailakakis D et al (2007) Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res 35:e43

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kholod N, Mustelin T (2001) Novel vectors for co-expression of two proteins in E. coli. Biotechniques 31(322–323):326–328

    Google Scholar 

  34. Yang W, Zhang L, Lu Z et al (2001) A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Expr Purif 22:472–478

    Article  CAS  PubMed  Google Scholar 

  35. Hinnebusch AG (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31:553–562

    Article  CAS  PubMed  Google Scholar 

  36. Busso D, Peleg Y, Heidebrecht T et al (2011) Expression of protein complexes using multiple Escherichia coli protein co-expression systems: a benchmarking study. J Struct Biol 175:159–170

    Article  CAS  PubMed  Google Scholar 

  37. Economou A, Christie PJ, Fernandez RC et al (2006) Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 62:308–319

    Article  CAS  PubMed  Google Scholar 

  38. Desvaux M, Hebraud M, Talon R et al (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145

    Article  CAS  PubMed  Google Scholar 

  39. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  40. Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  CAS  PubMed  Google Scholar 

  41. Binet R, Letoffe S, Ghigo JM et al (1997) Protein secretion by Gram-negative bacterial ABC exporters—a review. Gene 192:7–11

    Article  CAS  PubMed  Google Scholar 

  42. Steiner D, Forrer P, Stumpp MT et al (2006) Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24:823–831

    Article  CAS  PubMed  Google Scholar 

  43. Benoit RM, Wilhelm RN, Scherer-Becker D et al (2006) An improved method for fast, robust, and seamless integration of DNA fragments into multiple plasmids. Protein Expr Purif 45:66–71

    Article  CAS  PubMed  Google Scholar 

  44. Ruther U (1980) Construction and properties of a new cloning vehicle, allowing direct screening for recombinant plasmids. Mol Gen Genet 178:475–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Oxford Protein Production Facility-UK is supported by the UK Medical Research Council and the Biotechnology and Biology Research Council (MRC Grant MR/K018779/1). We thank Jo Nettleship for helpful discussions on E. coli secretion vectors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Bird, L.E., Rada, H., Flanagan, J., Diprose, J.M., Gilbert, R.J.C., Owens, R.J. (2014). Application of In-Fusion™ Cloning for the Parallel Construction of E. coli Expression Vectors. In: Valla, S., Lale, R. (eds) DNA Cloning and Assembly Methods. Methods in Molecular Biology, vol 1116. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-764-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-764-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-763-1

  • Online ISBN: 978-1-62703-764-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics